Fractional Er: YAG laser resurfacing is increasingly used for treating rhytides and photo aged skin because of its favorable benefit‐risk ratio. The multi-stacking and variable pulse width technology opened a wide horizon of rejuvenation treatments using this type of laser. To evaluate the efficacy and safety of the use of fractional 2940 nm Er: YAG laser in facial skin rejuvenation. Twelve female patients with mean age 48.3 years and multiple degrees of aging signs and solar skin damages, were treated with 2 sessions, one month apart by fractional Er: YAG laser. Each session consisted of 2 steps, the first step employed the use of the multi stack ablative fractional mode and the fractional long pulsed non-ablative mode settings were used in the second step. The results were assessed 4-8weeks after the last session by using the wrinkles assessment scale improvement, the improvement in the degree of dyschromia and keratosis, the degree of patients' satisfaction and rate of complications. The mean improvement in Wrinkles assessment scale was very satisfying. The improvement in keratosis was good to excellent in 66.7% of patients compared to 33.3% of patients who were mildly to moderately improved. Dyschromia improvement, 50% of the patients had good to excellent results versus 50% who had mild to moderate improvement. 75% of patients were well satisfied, 16.6% were moderately satisfied and 8.3% were unsatisfied. Total incidence of complications was 16.6%, where 1 patient had herpes infection and a second patient had milia. The use of Er: YAG laser in fractional ablative and fractional long pulse non ablative modes for facial rejuvenation is an effective, safe, with short down time and low complication rate.
Pure cadmium oxide films (CdO) and doped with zinc were prepared at different atomic ratios using a pulsed laser deposition technique using an ND-YAG laser from the targets of the pressed powder capsules. X-ray diffraction measurements showed a cubic-shaped of CdO structure. Another phase appeared, especially in high percentages of zinc, corresponding to the hexagonal structure of zinc. The degree of crystallinity, as well as the crystal size, increased with the increase of the zinc ratio for the used targets. The atomic force microscopy measurements showed that increasing the dopant percentage leads to an increase in the size of the nanoparticles, the particle size distribution was irregular and wide, in addition, to increase the surfac
... Show MoreAbstract: New copper(II) complexes with mixed ligand benziloxime (BOxH) and furfural-dehydeazine (FA) using classical (with and without solvent) and microwave heating methods have been prepared. The resulting complexes have been characterized using physico-chemical techniques. The study suggested that the ligands formed neutral complexes had general formulas [Cu(FA)(BOXH)(Ac)2] and [Cu(FA)(BOX)(OH)] in neutral (or acidic) and basic medium, respectively. Accordingly, hexa-coordinated mono-nuclear complexes have been investigated by this study and having distorted octahedral geometry. The effect of laser have been studied on solid ligands and solid complexes, no effect have been observed on most compounds through the results of melting poin
... Show MorePhotodynamic Action (PDA) by using appropriate wavelength of irradiation conjugated with porphyrin derivatives is a powerful mechanism of tumor destruction. Hematoporphyrin derivative has been shown to selectively localize in neoplastic cells and then cause destruction of them by generation of singlet oxygen when activated by low power He-Ne laser. Light which used in this study has been emitting from this laser has a wavelength equal to 632.8 nm (red light). Doses of laser had been varied from 3.6 J/cm2 to 14.4 J/cm2 . The beam of laser adjusted with a modified tissue culture plate. Cell lines had exposed to Hematoporphyrin D (HpD) for 24 hours before Laser exposure, their concentrations were varied from 5 µg/ml to 80 µg/ml. Resu
... Show MoreNanotechnology has shown a lot of promise in the oil and gas sectors, including nanoparticle-based drilling fluids. This paper aims to explore and assess the influence of various nanoparticles on the performance of drilling fluids to make the drilling operation smooth, cost effective and efficient. In order to achieve this aim, we exam the effect of Multi Wall Carbon Nanotube and Silicon Oxide Nanoparticles as Nanomaterial to prepare drilling fluids samples.
Anew method for mixing of drilling fluids samples using Ultra sonic path principle will be explained. Our result was drilling fluids with nano materials have high degree of stability.
The results of using Multiwall Carbon Nanotube and Silicon Oxide show t
... Show MoreThe existing investigation explains the consequence of irradiation of red laser on the optic properties of (CoO2) films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser in this technique. From the XRD analysis, the crystalline existence with trigonal crystal system was when the received films were processed by continuous red laser (700 nm) with power (>1000mW)for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time(0,30,45,60,75,90 mi
The existing investigation explains the consequence of irradiation of violet laser on the optic properties of (CoO2) films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser in this technique. From the XRD analysis, the crystalline existence with trigonal crystal system was when the received films were processed by continuous violet laser (405 nm) with power (1W) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time(0,30,45,60,75,90 min
Twenty five samples out of sixty wound swabs taken from burn patients were identified as P. aeruginosabacteria by conventional methods. Antibiotics susceptibility tests were performed against thirteen antibiotics. P. aeruginosa samples were treated with 0.5 mg/ml of Safranin O solution then irradiated with 532nm Q-switched Nd:YAG laser at four energy densities (0.324, 0.704, 1.380, and 1.831 J/cm2) for different times of 5, 8 and 11 minutes with 5Hz repetition rate. The viability, susceptibility to antibiotic and production of pyocyanin were determined before and after irradiation. The results showed that the number of CFU/ml of P. aeruginosa decreased with increasing the dose of irradiation. Complete killing of cells was observed at 1.8
... Show More