A tunable band pass filter based on fiber Bragg grating sensor using an in-fiber Mach-Zender interferometer with dual micro-cavities is presented. The micro-cavity was formed by splicing together a conventional single-mode fiber and a solid core photonic crystal fiber (SCPCF) with simple arc discharge technique. Different parameters such as arc power, length of the SCPCF and the overlap gap between samples were considered to control the fabrication process. The ellipsoidal air-cavity between the two fibers forms Fabry-Perot cavity. The diffraction loss was very low due to short cavity length. Ellipsoidal shape micro-cavities were experimentally achieved parallel to the propagation axis having dimensions of (24.92 – 62.32) μm of width and (3.82 – 18.2) μm of length. The maximum tunability 0.73nm was achieved at minimum length of (SCPCF) in the range (1545.673-1545.546) nm. A micro- cavity with width and length as high as 62.32 um and 18.3 um have higher sensitivity 0.31 nm/cm than temperature sensitivities of 18 pm/°C.
The automatic liquid filling system is used in different applications such as production of detergents, liquid soaps, fruit juices, milk products, bottled water, etc. The automatic bottle filling system is highly expensive. Where, the common filling systems required to complex changes in hardware and software in order to modify volume of liquid. There are many important variables in the filling process such as volume of liquid, the filling time, etc. This paper presents a new approach to develop an automatic liquid filling system. The new proposed system consists of a conveyor subsystem, filling stations, and camera to detect the level of the liquid at any instant during the filling process. The camera can detect accurately the leve
... Show MoreThis paper proposes and tests a computerized approach for constructing a 3D model of blood vessels from angiogram images. The approach is divided into two steps, image features extraction and solid model formation. In the first step, image morphological operations and post-processing techniques are used for extracting geometrical entities from the angiogram image. These entities are the middle curve and outer edges of the blood vessel, which are then passed to a computer-aided graphical system for the second phase of processing. The system has embedded programming capabilities and pre-programmed libraries for automating a sequence of events that are exploited to create a solid model of the blood vessel. The gradient of the middle c
... Show MoreAbstract. In this work, some new concepts were introduced and the relationship between them was studied. These concepts are filter directed-toward, nano-closure-directed-toward and nano-closure-converge to point, and some theories and results about these concepts were presented. A definition almost-nano-converges for set, almost-nano-cluster-point, and definition of quasi-nano-Hausdorff-closed and was also called nano-Hausdorff-closed relative, were also presented several theories related to these definitions were presented and the relationship between them was studied . We also provided other generalizations, including nano closure continuous mappings and it was also called as nano-weaklycontinuous- mappings, as well as providing a definit
... Show MoreWe introduce some new generalizations of some definitions which are, supra closure converge to a point, supra closure directed toward a set, almost supra converges to a set, almost supra cluster point, a set supra H-closed relative, supra closure continuous functions, supra weakly continuous functions, supra compact functions, supra rigid a set, almost supra closed functions and supra perfect functions. And we state and prove several results concerning it
In this paper introduce some generalizations of some definitions which are, closure converge to a point, closure directed toward a set, almost ω-converges to a set, almost condensation point, a set ωH-closed relative, ω-continuous functions, weakly ω-continuous functions, ω-compact functions, ω-rigid a set, almost ω-closed functions and ω-perfect functions with several results concerning them.
The accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
The Frequency-hopping Spread Spectrum (FHSS) systems and techniques are using in military and civilianradar recently and in the communication system for securing the information on wireless communications link channels, for example in the Wi-Fi 8.02.X IEEE using multiple number bandwidth and frequencies in the wireless channel in order to hopping on them for increasing the security level during the broadcast, but nowadays FHSS problem, which is, any Smart Software Defined Radio (S-SDR) can easily detect a wireless signal at the transmitter and the receiver for the hopping sequence in both of these, then duplicate this sequence in order to hack the signal on both transmitter and receiver messages using the order of the se
... Show More