This study investigates the surgical and thermal effects on oral soft tissues produced by CO2 laser emitting at 10.6 micrometers with three different fluences 490.79, 1226.99 and 1840.4 J/cm2. These effects are specifically; incision depth, incision width and the tissue damage width and depth. The results showed that increasing the fluence and /or the number of beam passes increase the average depths of ablation. Moreover, increasing the fluence and the number of beam passes increase the adjacent tissue damage in width and depth. Surgeons using CO2 laser should avoid multiple pulses of the laser beam over the same area, to avoid unintentional tissue damage.
One of the most popular causes for implant infection is dental plaque bacteria. Previous studies have shown the bactericidal effect of CO2 laser irradiation on bacteria associated with soft tissue surrounding the implant materials. No published studies have examined the effect of irradiation by CO2 laser on Streptococcus oralis and Staphylococcus aureus.The aim of this study was to evaluate the bactericidal effect of CO2 laser on bacteria that are causing dental implant infections. This study was carried out on two isolates of bacterial species out of 25 samples, isolated from patients having soft tissue infections around the dental implant. These two pure isolates including Streptococcus oralis and Staphylococcus aureus were identified
... Show MoreIn the present study, Čech fuzzy soft bi-closure spaces (Čfs bi-csp’s) are defined. The basic properties of Čfs bi-csp’s are studied such as we show from each Čfs bi-csp’s (
Spelling correction is considered a challenging task for resource-scarce languages. The Arabic language is one of these resource-scarce languages, which suffers from the absence of a large spelling correction dataset, thus datasets injected with artificial errors are used to overcome this problem. In this paper, we trained the Text-to-Text Transfer Transformer (T5) model using artificial errors to correct Arabic soft spelling mistakes. Our T5 model can correct 97.8% of the artificial errors that were injected into the test set. Additionally, our T5 model achieves a character error rate (CER) of 0.77% on a set that contains real soft spelling mistakes. We achieved these results using a 4-layer T5 model trained with a 90% error inject
... Show MoreBiodiversity is one of the important biological factors in determining water quality and maintaining the
ecological balance. In this study, there are 223 species of phytoplankton were identified, and they are as
follows: 88 species of Bacillariophyta and were at 44%,70 species of Chlorophyta and they were at 29 %, 39
species of Cyanophyta and they were at 16 %, 12 species of Euglenozoa and they were at 4 %, four species of
Miozoa and they were at 3 %, and, Phylum Charophyta and Ochrophyta were only eight and two species,
respectively and both of them were at 2%. The common phytoplankton recorded in the sites studied
include Nitzschia palea, Scenedesmus quadricauda, Oscillatoria princeps, and Peridinium
The current work studies the effect of adding chopped carbon fiber (CCF) on gypsum plaster properties (precisely the compressive strength and the modulus of rupture). The research plan consists of using six mixes of gypsum plaster; these mixes are divided into two groups according to the (Water/Gypsum) ratios (0.5 & 0.6). Each group was divided into three subgroups according to CCF volume fraction (Vf): 0.0%, 0.2% and 0.4%. Three cubic (50×50×50) mm and three prismatic (40×40×160) mm samples were performed for each mix. It was found that, the addition of CCF to the gypsum plaster mixes increases both the compressive strength and the modulus of rupture for both (W/G) ratios, an
The aim of this study is to understand the effect of addition carbon types on aluminum electrical conductivity which used three fillers of carbon reinforced aluminum at different weight fractions. The experimental results showed that electrical conductivity of aluminum was decreased by the addition all carbon types, also at low weight fraction of carbon black; it reached (4.53S/cm), whereas it was appeared highly increasing for each carbon fiber and synthetic graphite. At (45%) weight fraction the electrical conductivity was decreased to (4.36Scm) and (4.27Scm) for each carbon fiber and synthetic graphite, respectively. While it was reached to maximum value with carbon black. Hybrid composites were investigated also; the results exhibit tha
... Show MoreLow- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show MoreObjective: Evaluation of the poly ether keton keton polymer (PEKK) coating material on the commercial pure titanium disks (CP Ti) with or without laser surface structuring. Design: In vitro experimental study of PEKK polymer coated material on the CP Ti disks with or without laser surface structuring. Materials and methods: coating the surface of the commercial pure titanium (CP Ti) disks with PEKK polymer was performed via using frictional mode CO2 laser, then the samples disks analyzed by using FESEM. Results: the FESEM reveal good adherence and distribution of the PEKK coated material over the CP Ti substrate by using the frictional mode CO2 laser at 2 watt and 6 ms pulse duration. Conclusion: the frictional mode CO2 laser considered an
... Show More