In this article, a short review on the feature of reality and locality in quantum optics is given.
The Bell inequality and the Bell states are introduced to show their direct use in quantum computer and
quantum teleportation. Moreover, quantum cryptography is discussed in some details regarding basic
ideas and practical considerations. In addition, a case study involving distillation of a quantum key based
on the given fundamentals is presented and discussed.
l
The nonlinear refractive (NLR) index and third order susceptibility (X3) of carbon quantum dots (CQDs) have been studied using two laser wavelengths (473 and 532 nm). The z-scan technique was used to examine the nonlinearity. Results showed that all concentrations have negative NLR indices in the order of 10−10 cm2/W at two laser wavelengths. Moreover, the nonlinearity of CQDs was improved by increasing the concentration of CQDs. The highest value of third order susceptibility was found to be 3.32*10−8 (esu) for CQDs with a concentration of 70 mA at 473 nm wavelength.
In this work, ZnO quantum dots (Q.dots) and nanorods were prepared. ZnO quantum dots were prepared by self-assembly method of zinc acetate solution with KOH solution, while ZnO nanorods were prepared by hydrothermal method of zinc nitrate hexahydrate Zn (NO3)2.6H2O with hexamethy lenetetramin (HMT) C6H12N4. The optical , structural and spectroscopic properties of the product quantum dot were studied. The results show the dependence of the optical properties on the crystal dimension and the formation of the trap states in the energy band gap. The deep levels emission was studied for n-ZnO and p-ZnO. The preparation ZnO nanorods show semiconductor behavior of p-type, which is a difficult process by doping because native defects.
We report a new theranostic device based on lead sulfide quantum dots (PbS QDs) with optical emission in the near infrared wavelength range decorated with affibodies (small 6.5 kDa protein-based antibody replacements) specific to the cancer biomarker human epidermal growth factor receptor 2 (HER2), and zinc(II) protoporphyrin IX (ZnPP) to combine imaging, targeting and therapy within one nanostructure. Colloidal PbS QDs were synthesized in aqueous solution with a nanocrystal diameter of ∼5 nm and photoluminescence emission in the near infrared wavelength range. The ZHER2:432 affibody, mutated through the introduction of two cysteine residues at the C-terminus (
Objectives: The research aims to demonstrate the integration between Quantum Computing (QC) and Predictive Analysis (PA) and their role in reducing costs while achieving Sustainable Development Goals (SDGs). The study addresses the inefficiencies in calculating and measuring product costs under traditional systems and examines how QC and PA can enhance cost reduction and product quality to better meet customer needs. Additionally, the research seeks to strengthen the theoretical framework with practical applications, illustrating how this integration improves a company’s competitive position while promoting social, environmental, and economic sustainability. Methods: The study employs a descriptive analytical approach, focusi
... Show MoreWater quality sensors have recently received a lot of attention due to their impact on human health. Due to their distinct features, environmental sensors are based on carbon quantum dots (CQDs). In this study, CQDs were prepared using the electro-chemical method, where the structural and optical properties were studied. These quantum dots were used in the environmental sensor application after mixing them with three different materials: CQDs, Alq3 polymer and CQDs and Alq3 solutions using two different methods: drop casting and spin coating, and depositing them on silicon. The sensitivity of the water pollutants was studied for each case of the prepared samples after measuring the change in resistance of the samples at a temperature of
... Show MoreQuantum dots (QDs) can be defined as nanoparticles (NPs) in which the movement of charge carriers is restricted in all directions. CdTe QDs are one of the most important semiconducting crystals among other various types where it has a direct energy gap of about 1.53 eV. The aim of this study is to exaine the optical and structural properties of the 3MPA capped CdTe QDs. The preparation method was based on the work of Ncapayi et al. for preparing 3MPA CdTe QDs, and hen, the same way was treated as by Ahmed et al. via hydrothermal method by using an autoclave at the same temperature but at a different reaction time. The direct optical energy gap of CdTe QDs is between 2.29 eV and 2.50 eV. The FTIR results confirmed the covalent bonding betwee
... Show MoreIn this paper, a theoretical study of the energy spectra and the heat capacity of one electron quantum dot with Gaussian Confinement in an external magnetic field are presented. Using the exact diagonalization technique, the Hamiltonian of the Gaussian Quantum Dot (GQD) including the electron spin is solved. All the elements in the energy matrix are found in closed form. The eigenenergies of the electron were displayed as a function of magnetic field, Gaussian confinement potential depth and quantum dot size. Explanations to the behavior of the quantum dot heat capacity curve, as a function of external applied magnetic field and temperature, are presented.
The dispersion relation of linear quantum ion acoustic waves is derivate according to a fluid approach that depends on the kinetic description of the systems of charged particles model. We discussed the dispersion relation by changing its parameters and graphically represented. We found through graphs that there is full agreement with previous studies on the subject of interest. That motivates us to discuss the dispersion relation of waves depending on the original basic parameters that implicitly involved in the relationship which change the relationship by one way or another, such as electron Fermi temperature and the density at equilibrium state.