The main purpose of this work is the construction of an optical parametric amplifier (OPA) to generate a 629 nm pulsed laser. KTP nonlinear crystals were used for both parametric oscillation and amplification. A singly resonant parametric oscillator (OPO) is constructed to generate a signal of 1.54 μm and idler of 3.4 μm when the OPO system is pumped by 1.064 μm Q – switched Nd: YAG laser. The signal was then mixed with the pumping beam in OPA system to form the wanted wavelength. The obtained optical conversion efficiency was 60%.
oday deep ocean life has not been discovered by humans including many secret world things to be explored. The researcher has focused on underwater optical wireless communications using various kinds of complex digital Signal processing most of them used in air and starting applied in underwater communication. The Internet of Things (IoT) uses underwater called Internet of Underwater Things (IoUT) applications to explore the underwater world with other devices. However, the difference in concentration between air and water surfaces is not easy making wireless communication more complicated. Visible light passes the water's surface with scattering and distortion inside the water and each color of light has different attenuation the blue laser
... Show MoreIn this work, the finite element analysis of moving coordinates has been used to study the thermal behavior of the tissue subjected to both continuous wave and pulsed CO2 laser. The results are compared with previously published data, and a good agreement has been found, which verifies the implemented theory. Some conclusions are obtained; As pulse width decreases, or repetition rate increases, or fluence increases then the char depth is decreased which can be explained by an increase in induced energy or its rate, which increases the ablation rate, leading to a decrease in char depth. Thus: An increase in the fluence or decreasing pulse width or increasing repetition rate will increase ablation rate, which will increase the depth of cut
... Show More<span>We present the linearization of an ultra-wideband low noise amplifier (UWB-LNA) operating from 2GHz to 11GHz through combining two linearization methods. The used linearization techniques are the combination of post-distortion cancellation and derivative-superposition linearization methods. The linearized UWB-LNA shows an improved linearity (IIP3) of +12dBm, a minimum noise figure (NF<sub>min.</sub>) of 3.6dB, input and output insertion losses (S<sub>11</sub> and S<sub>22</sub>) below -9dB over the entire working bandwidth, midband gain of 6dB at 5.8GHz, and overall circuit power consumption of 24mW supplied from a 1.5V voltage source. Both UWB-LNA and linearized UWB-LNA designs are
... Show MoreThis work is focused on studying the effect of liquid layer level (height above a target material) on zinc oxide nanoparticles (ZnO and ZnO2) production using liquid-phase pulsed laser ablation (LP-PLA) technique. A plate of Zn metal inside different heights of an aqueous environment of cetyl trimethyl ammonium bromide (CTAB) with molarity (10-3 M) was irradiated with femtosecond pulses. The effect of liquid layer height on the optical properties and structure of ZnO was studied and characterized through UV-visible absorption test at three peaks at 213 nm, 216 nm and 218 nm for three liquid heights 4, 6 and 8 mm respectively. The obtained results of UV–visible spectra test show a blue shift accomp
... Show MoreIn this research, some robust non-parametric methods were used to estimate the semi-parametric regression model, and then these methods were compared using the MSE comparison criterion, different sample sizes, levels of variance, pollution rates, and three different models were used. These methods are S-LLS S-Estimation -local smoothing, (M-LLS)M- Estimation -local smoothing, (S-NW) S-Estimation-NadaryaWatson Smoothing, and (M-NW) M-Estimation-Nadarya-Watson Smoothing.
The results in the first model proved that the (S-LLS) method was the best in the case of large sample sizes, and small sample sizes showed that the
... Show MoreThis study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity.
Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed
... Show MoreA simulated ion/electron optical transport and focusing system has been put forward to
be mounted on high voltage transmission electron microscope for in situ investigations.
The suggested system consists of three axially symmetric electrostatic lenses namely an
einzel lens, an accelerating immersion lens, and a decelerating immersion lens, in addition
to an electrostatic quadrupole doublet lens placed on the image side. The electrodes
profile of these lenses is determined from the proposed axial field distributions. The
optical properties of the whole system have been computed together with the trajectory of
the accelerated charged-particles beam along the optical axis of the system. The computed
dimensions of th
The objective of this study is to determine the efficacy of class V Er:YAG laser (2940 nm) cavity preparation and conventional bur cavity preparation regarding Intrapulpal temperature rise during cavity preparation in extracted human premolar teeth. Twenty non carious premolar teeth extracted for orthodontic purposes were used and class V cavity preparation was applied both buccal and lingual sides for each tooth .Samples were equally grouped into two major groups according to cavity depth (1mm and 2mm). Each major group was further subdivided into two subgroupsof ten teeth for each (twenty cavities for each subgroup). TwinlightEr:YAG laser (2940 nm) with 500mJ pulse energy, P.R.R of 10 Hz and 63.69 J/cm2 energy density was used. The ana
... Show More