The spectral characteristics and the nonlinear optical properties of the mixed donor (C-480) acceptor (Rh-6G) have been determined. The spectral characteristics are studied by recording their absorption and fluorescence spectra. The nonlinear optical properties were measured by z-scan technique, using Q-switched Nd: YAG laser with 1064 nm wavelength. The results showed that the optimum concentration of acceptor is responsible for increasing the absorption and the emission bandwidth of donor to full range and to 242 nm respectively by the energy transfer process, also the efficiency of the process was increased by increasing the donor and acceptor concentration. The obtained nonlinear properties results of the mixture C-480/ Rh-6G showed a negative nonlinear refractive index and reverse saturation absorption. All the nonlinear optical parameters are linearly dependent with concentration. The origin of optical nonlinearity in the dye may be attributed to laser-heating induced nonlinear effect. Results show that mixture of laser dyes are effective nonlinear optical materials as compared to individual laser dyes.
In this paper the effect of nonthermal atmospheric argon plasma on the optical properties of the cadmium oxide CdO thin films prepared by chemical spray pyrolysis was studied. The prepared films were exposed to different time intervals (0, 5, 10, 15, 20) min. For every sample, the transmittance, Absorbance, absorption coefficient, energy gap, extinction coefficient and dielectric constant were studied. It is found that the transmittance and the energy gap increased with exposure time, and absorption. Absorption coefficient, extinction coefficient, dielectric constant decreased with time of exposure to the argon plasma
The aim of the present research is concerned with study the effect of UV radiation on the optical properties at wavelengths 254, 365 nm of pure PC and anthracene doping PC films prepared using the cast method for different doping ratio 10-60 mL. Films of pure PC and anthracene doping PC were aged under UV radiation for periods of up to 360 h. It found that the effect of UV radiation at wavelength 254 nm on the optical properties is great than the effect of UV radiation at wavelength 365 nm. Also, it found that the optical energy gap of pure PC and anthracene doping PC films is stable against radiation.
Water hyacinth (Eichhornia crassipes) is a free-floating plant, growing plentifully in the tropical water bodies. It is being speculated that the large biomass can be used in wastewater treatment, heavy steel and dye remediation, as a substrate for bioethanol and biogas production, electrical energy generation, industrial uses, human food and antioxidants, medicines, feed, agriculture, and sustainable improvement. In this work, the adsorption of Congo Red (CR) from aqueous solution onto EC biomass was investigated through a series of batch experiments. The effects of operating parameters such as pH (3-9), dosage (0.1-0.9 g. /100 ml), agitated velocity (100-300), size particle (88-353μm), temperature (10-50˚C), initial dye
... Show MoreThis research aimed to examine the effect of concentration of dyes stuff, contact time, temperature and ratio of adsorbent weight in (gm) to volume of solution in (ml) on the percentage removal. Two dyes were used; direct blue 6 and direct yellow and the adsorbent was the maize cob. Batch experiments were performed by contacting different weights of adsorbent with 50 ml of solution of desired concentration with continuous stirring at various temperatures. The percentage of removal was calculated and the maximum percentage of removal was 80%. And as the concentration of solution, contact time, temperature and the ratio of adsorbent to volume of solution increase the percentage of removal increase.
The presence of dyes in wastewater has become a major issue all over the world. The discharge of dyes in the environment is concerned for both toxicological and esthetical reasons. In this study, the removal of dyes from aqueous solution by electrocoagulation using aluminum electrodes as cathode and anode were investigated with the electrocoagulation cell of 1litter. The study included: the impact of various operating parameters on the dyes removal efficiency like pH, NaCl concentration, distance between electrodes, voltage, initial dyes concentration and type of electrodes. The dye (congo red) concentrations were (50, 100, 150, and 200 ppm), stirring speed was 120 rpm at room temperature. pH used was maintained constant
... Show MoreThe current work discusses the removal of brilliant dyes. These dyes were Brilliant Cresyl Blue (BCB) and Brilliant Green (BG) by the use of poly acrylic acid hydrogel beads (PAA). We examined the adsorption isotherms and found that the factors preferring it are temperature and salt, shaking effects, wet PAA, (BCB) and (BG) follows Freundlich equation more than other equations. Based on the results, there is a positive correlation between adsorption of dyes (BCB and BG) and temperature (Endothermic process). We calculated the thermodynamic functions (ΔG, ΔS, and ΔH). The ion strength effects on the adsorptions at (20 °C) increased adsorption if the salt concentrations is high. We treated the kinetics outcomes based on Lagergren Equation
... Show MoreThere has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide very low bit error rates (BER) along with information security. This paper investigates the feasibility of using chaotic communications over Multiple-Input Multiple-Output (MIMO) channels by combining chaos modulation with a suitable Space Time Block Code (STBC). It is well known that the use of Chaotic Modulation techniques can enhance communication security. However, the performance of systems using Chaos modulation has been observed to be inferior in BER performance as compared to conventional communication
... Show MoreThe high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show More
