The optimization of artificial gas lift techniques plays a crucial role in the advancement of oil field development. This study focuses on investigating the impact of gas lift design and optimization on production outcomes within the Mishrif formation of the Halfaya oil field. A comprehensive production network nodal analysis model was formulated using a PIPESIM Optimizer-based Genetic Algorithm and meticulously calibrated utilizing field-collected data from a network comprising seven wells. This well group encompasses three directional wells currently employing gas lift and four naturally producing vertical wells. To augment productivity and optimize network performance, a novel gas lift design strategy was proposed. The optimization of gas allocation was executed to maximize oil production rates while minimizing the injected gas volume, thus achieving optimal oil production levels at the most effective gas injection volume for the designated network. The utilization of the PIPESIM Optimizer, founded on genetic algorithm principles, facilitated the attainment of these optimal parameters. The culmination of this study yielded an optimal oil production rate of 18,814 STB/d, accompanied by a gas lift injection rate of 7.56 MMscf/d. This research underscores the significance of strategic gas lift design and optimization in enhancing oil recovery and operational efficiency in complex reservoir systems like the Mishrif formation within the Halfaya oil field.
Wellbore stability is considered as one of the most challenges during drilling wells due to the
reactivity of shale with drilling fluids. During drilling wells in North Rumaila, Tanuma shale is
represented as one of the most abnormal formations. Sloughing, caving, and cementing problems
as a result of the drilling fluid interaction with the formation are considered as the most important
problem during drilling wells. In this study, an attempt to solve this problem was done, by
improving the shale stability by adding additives to the drilling fluid. Water-based mud (WBM)
and polymer mud were used with different additives. Three concentrations 0.5, 1, 5 and 10 wt. %
for five types of additives (CaCl2, NaCl, Na2S
In this work, the effect of partial amounts of gases in gas mixture of a CW CO2 laser on the output power was investigated. Also their effect on the condition determining the glow-discharge self-sustaining required for pumping the active medium was studied. Two fit relations were derived to predict the output laser power and the electric field to unit pressure ratio as functions to the partial amounts of gases. Results presented in this work could be used fruitfully to determine some of the optimum operational conditions of glow-discharge low-power CW CO2 lasers.
We report here the observation of 16 µm superradiance laser action generated from optical pumping of CF4 gas molecules (which is cooled to 140 Kº by a boil-off liquid-N2) by a TEA-CO2 laser 9R12 line. Output laser pulses of 7 mJ and 200 ns have been obtained.
In this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar
... Show MoreThe global oil market is one of the most important markets in the world and occupies especially for countries consuming and producing countries, and the status of understanding of the mechanism for determining prices in the market help to stand on many factors affecting oil demand and supply of oil and geopolitical factors, climate and alternative sources of energy .. etc. factors, and that the main objective of the research is to study the causes and results left behind by the oil price shocks in the world market, and the movement of these factors be through a cycle of energy that explain the strength of competition between these factors and their effects on prices, when demand increases evolution Large image leads to significan
... Show MoreSimplification of new fashion design methods
Design and construction of video extractor circuit require an understanding of several parameters, which include: Selector circuit, extracting circuit which contains sampling signal and multiplexing. At each radar pulse, the video signal is fed to one of the selector. The fast filter has a pass –band from 190 Hz to 1800 Hz. These frequencies correspond to targets having radial velocities laying between and 10 Kph and 200 Kph.Slow filter: 60 Hz to 230 Hz for radial velocities laying between 3.5 and 13 Kph.The video- extractor is organized in four PCB CG (A-B-C-D) each one having 16 selector. The sampling signal (ADS) (1-2-3-4) control the 4-line-to-16-line decoders. 8 multiplexers of 8 inputs each, are required for the multiplexing of the
... Show More