Many oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different from one well to another, from the high-pressure-temperature reservoir to surface conditions. All these factors must be investigated on a case-by-case basis. Because the Halfaya oil field is still developing its petroleum sector, modelling, and forecasting the phase behavior and asphaltene precipitation is crucial. This work used crude oil bottom hole samples with an API of equal to 27 from a well in the Halfaya oil field/Nahr-Umr formation to create a thermodynamic model using Multiflash software. The data included the compositional analysis, the PVT data, and reservoir conditions. The thermodynamic model of asphaltene phase behavior was proposed using the Cubic-Plus association equation of state. All the screening techniques' results revealed the presence of an asphaltene precipitation issue (asphaltene unstable), which was confirmed by a thermodynamic fluid model. The aim of this paper is to predict the problem of asphaltene precipitation so that future proactive remedial methods can be developed to decrease the time and expense associated with it.
A factorial experiment was conducted at the College of Education for Pure Sciences Ibn al Haitham/University of Baghdad for the 2023 growing season to study the effect of the biofertilizer represented by the mycorrhizae vaccine and the NPK Nano fertilizer on some indicators of vegetative and root growth, yield, and volatile oil production of the basil plant, Ocimum basilicum L., the experiment included two factors. The rst factor was mycorrhizae inoculum at 2 levels: 0 (no addition) and an addition of 25 g plant–1, as the seeds were inoculated upon planting. The second factor was spraying the plant’s shoots with NPK Nano fertilizer at four levels (0, 0.5, 1, 1.5) g l–1. The results showed a signicant eect of the treatment of inocula
... Show More(1) Background: Plant flavonoids are efficient in preventing and treating various diseases. This study aimed to evaluate the ability of hesperidin, a flavonoid found in citrus fruits, in inhibiting lipopolysaccharide (LPS) induced inflammation, which induced lethal toxicity in vivo, and to evaluate its importance as an antitumor agent in breast cancer. The in vivo experiments revealed the protective effects of hesperidin against the negative LPS effects on the liver and spleen of male mice. (2) Methods: In the liver, the antioxidant activity was measured by estimating the concentration of glutathione (GSH) and catalase (CAT), whereas in spleen, the concentration of cytokines including IL-33 and TNF-α was measured. The in vitro expe
... Show MoreGas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process is capital intensive as it requires the construction of dual-completed wells for oil production and water drainage and additional multiple vertical gas-injection wells. The costs could be substantially reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells. These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that emulates a real North Sea oil field. The design aims at maximum oil recovery us
... Show MoreA detailed experimental study was devoted to the anodic oxidation of oxalic acid using manganese dioxide rotating cylinder anode with the objective to evaluate in a systematic way the effect on the oxalic acid oxidation process of several relevant parameters, including the presence of sodium chloride, the current density (J), the rotation speed, the temperature, and the initial concentration of oxalic acid. Thin manganese dioxide film on graphite substrate has been prepared by electrochemical oxidation from MnSO4-H2SO4 electrolyte. The morphology of this electrode was investigated by XRD, SEM, EDS and AFM techniques. The results show that a firm γ-structure of MnO2 film on graphite rod can be obtained successfully. The results indicate tha
... Show MoreThe purpose of this work was to study the effects of the Nd:YAG laser on exposed dentinal
tubules of human extracted teeth using a scanning electron microscope (SEM). Eighty 2.5mm-thick
slices were cut at the cementoenamel junction from 20 extracted human teeth with an electric saw. A
diamond bur was used to remove the cementum layer to expose the dentinal tubules. Each slice was
sectioned into four equal quadrants and the specimens were randomly divided into four groups (A to D ).
Groups B to D were lased for 2 mins using an Nd:YAG laser at 6 pulses per second at energy outputs of
80 , 100 and 120 mJ. Group A served as control. Under SEM observation, nonlased specimens showed
numerous exposed dentinal tubules. SEM o