Reservoir characterization plays a crucial role in comprehending the distribution of formation properties and fluids within heterogeneous reservoirs. This knowledge is instrumental in constructing an accurate three-dimensional model of the reservoir, facilitating predictions regarding porosity, permeability, and fluid flow distribution. Among the various methods employed for reservoir characterization, the hydraulic flow unit stands out as a widely adopted approach. By effectively subdividing the reservoir into distinct zones, each characterized by unique petrophysical and geological properties, hydraulic flow units enable comprehensive reservoir analysis. The concept of the flow unit is closely tied to the flow zone indicator, a critical parameter that defines the porosity-permeability relationships of each hydraulic flow unit. Additionally, the flow zone indicator method proves valuable in estimating permeability accurately. In this study, we demonstrate the application of the flow zone indicator method to determine hydraulic flow units within the Khasib formation. By analyzing core data and calculating the Rock Quality Index (RQI) and Flow Zone Indicator (∅Z), we differentiate the formation into four hydraulic flow units based on FZI values. Specifically, HFU 1 represents a rock of poor quality, corresponding to compact and chalky limestone. HFU 2 represents intermediate quality, corresponding to argillaceous limestone, while HFU 3 represents good quality, corresponding to porous limestone. Lastly, HFU 4 signifies an excellent reservoir rock quality characterized by vuggy limestone. By establishing a permeability equation that correlates with effective porosity for each rock type, we successfully estimate permeability. Comparing these estimated permeability values with core permeability reveals a strong agreement with a high correlation coefficient of 0.96%. Consequently, the flow zone indicator method effectively classifies the Khasib formation into four distinct hydraulic flow units and provides an accurate and reliable means of determining permeability in the reservoir. The resulting permeability equations can be applied to wells and depth intervals lacking core measurements, further emphasizing the practical utility of the FZI method.
The purpose of this research is to identify the effect of the use of project-based learning in the development of intensive reading skills at middle school students. The experimental design was chosen from one group to suit the nature of the research and its objectives. The research group consisted of 35 students. For the purpose of the research, the following materials and tools were prepared: (List of intensive reading skills, intensive reading skills test, teacher's guide, student book). The results of the study showed that there were statistically significant differences at (0.05) in favor of the post-test performance of intensive reading skills. The statistical analysis also showed that the project-based learning approach has a high
... Show MoreThe - M ultiple mixing ratios of -transitions from levels of 56Fe populated in 56 56 Fe n n Fe ( , ) reactions are calculated by using const. S.T.M. This method has been used in other works [3,7] but with pure transition or with transitions that can be considered as pure transitions، in our work we used This method for mixed - transitions in addition to pure - transitions. The experimental angular distribution coefficients a2 was used from previous works [1] in order to calculet - values. It is clear from the results that the - values are in good agreement or consistent, within associated errors, with those reported previously [1]. The discrepancies that occur are due to inaccuracies existing in the expe
... Show MoreFree Radical Copolymerization of Styrene/ Methyl Methacrylate were prepared chemically under Nitrogen ,which was investigated, in the present of Benzoyl Peroxide as Initiator at concentration of 2 × 10-3 molar at 70 °C, which was carried out in Benzene as solvent to a certain low conversion . FT-IR spectra were used for determining of the monomer reactivity ratios ,which was obtained by employing the conventional linearization method of Fineman-Ross (F-R) and Kelen-Tüdos (K- T). The experimental results showed the average value for the Styrene r1 / Methyl Methacrylate r2 system, Sty r1 = 0.45 , MMA r2 = 0.38 in the (F–R) Method and r1 = 0.49 , r2 = 0.35 in the (K–T) Method, The Results of this indicated show the random distri
... Show MoreThe -mixing of - transition in Er 168 populated in Er)n,n(Er 168168 reaction is calculated in the present work by using a2- ratio method. This method has used in previou studies [4, 5, 6, 7] in case that the second transition is pure or for that transition which can be considered as pure only, but in one work we applied this method for two cases, in the first one for pure transition and in the 2nd one for non pure transitions. We take into accunt the experimental a2- coefficient for p revious works and -values for one transition only [1]. The results obtained are, in general, in agood agreement within associated errors, with those reported previously [1], the discrepancies that occur are due to inaccuracies existing
... Show MoreIs in this research review of the way minimum absolute deviations values based on linear programming method to estimate the parameters of simple linear regression model and give an overview of this model. We were modeling method deviations of the absolute values proposed using a scale of dispersion and composition of a simple linear regression model based on the proposed measure. Object of the work is to find the capabilities of not affected by abnormal values by using numerical method and at the lowest possible recurrence.
Nowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained
Knowledge of the distribution of the rock mechanical properties along the depth of the wells is an important task for many applications related to reservoir geomechanics. Such these applications are wellbore stability analysis, hydraulic fracturing, reservoir compaction and subsidence, sand production, and fault reactivation. A major challenge with determining the rock mechanical properties is that they are not directly measured at the wellbore. They can be only sampled at well location using rock testing. Furthermore, the core analysis provides discrete data measurements for specific depth as well as it is often available only for a few wells in a field of interest. This study presents a methodology to generate synthetic-geomechani
... Show More