The electric submersible pump, also known as ESP, is a highly effective artificial lift method widely used in the oil industry due to its ability to deliver higher production rates compared to other artificial lift methods. In principle, ESP is a multistage centrifugal pump that converts kinetic energy into dynamic hydraulic pressure necessary to lift fluids at a higher rate with lower bottomhole pressure, especially in oil wells under certain bottomhole condition fluid, and reservoir characteristics. However, several factors and challenges can complicate the completion and optimum development of ESP deployed wells, which need to be addressed to optimize its performance by maximizing efficiency and minimizing costs and uncertainties. To analyze the performance of ESP deployed wells, the objective function must include various factors associated with fluids, reservoir inflow and outflow characteristics, and pump parameters. In particular, the inflow and outflow parameters include well configuration, and types of completion string (e.g. tubing sizes, and download completion hardware) while reservoir and fluid parameters include pressure, temperature, and PVT properties. Pump parameters include gas vacuum fraction, electrical and mechanical constraints, power requirements, cable requirements, downhole conditions, etc. Despite these challenges, ESPs' importance and efficiency necessitate an in-depth understanding of its origins and evolution over time, as well as the difficulties encountered in the oil industry. This paper aims to provide a comprehensive review of ESP's origin and development, including all prior studies that have influenced optimum development. The literature review is divided into four main sections: experimental investigations, numerical simulation studies, mechanical modeling, and in-depth studies on production optimization. By providing an in-depth analysis of previous work in each area, this paper aims to contribute to ongoing efforts to enhance ESPs' performance and efficiency in the oil industry.
BACKGROUND: Hepatocyte growth factor (HGF) is a proangiogenic factor that exerts different effects over stem cell survival growth, apoptosis, and adhesion. Its impact on leukemogenesis has been established by many studies. AIM: This study aimed to determine the effect of plasma HGF activity on acute myeloid leukemia (AML) patients at presentation and after remission. PATIENTS AND METHODS: This was a cross-sectional prospective study of 30 newly-diagnosed, adult, and AML patients. All patients received the 7+3 treatment protocol. Patients’ clinical data were taken at presentation, and patients were followed up for 6 months to evaluate the clinical status. Plasma HGF levels were estimated by ELISA based methods in the pa
... Show MoreDapagliflozin is a novel sodium-glucose cotransporter type 2 inhibitor. This work aims to develop a new
validated sensitive RP-HPLC coupled with a mass detector method for the determination of dapagliflozin, its
alpha isomer, and starting material in the presence of dapagliflozin major degradation products and an internal
standard (empagliflozin). The separation was achieved on BDS Hypersil column (length of 250mm, internal
diameter of 4.6 mm and 5-μm particle size) at a temperature of 35℃. Water and acetonitrile were used as
mobile phase A and B by gradient mode at a flow rate of 1 mL/min. A wavelength of 224nm was selected to
perform detection using a photo diode array detector. The method met the
The new ligand [N1,N4-bis((1H-benzo[d]Glyoxalin-2-yl)carbamothioyl)Butanedi amide] (NCB) derived from Butanedioyl diisothiocyanate with 2-aminobenz imidazole was used to prepare a chain of new metal complexes of Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Pd(II), Ag(I), Cd(II) by general formula [M(NCB)]Xn ,Where M= Cr(III), n=3, X=Cl; Mn(II), Co(II), Ni(II), Cu(II), Pd(II), Cd(II) ,n=2 , X=Cl; Ag(I), n=1, X=NO3. Characterized compounds on the basis of 1H, 13CNMR (for (NCB), FT-IR and U.V spectrum, melting point, molar conduct, %C, %H, %N and %S, the percentage of the metal in complexes %M, Magnetic susceptibility, thermal studies (TGA),while its corrosion inhibition for mild steel in Ca(OH)2 solution is studied by weight loss. These measureme
... Show MoreTransition metal complexes of Y(III), La(III) and Rh(III) with azo dye 2,4-dimethyl-6- (4-nitro-phenylazo)-phenol derived from 4-nitroaniline and 2,4-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR,UV-Vis and 1HNMR, as well as conductivity measurements. The nature of the complexes formed were studies following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1x10-4- 3x10-4). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiomerty of the complexes has been found to be 1:3 (Metal:ligand). On the basis of Physicochemical data octahedral geometries were as
... Show Morea laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the rod that appears for Au NPs, in addition to that, TEM has been an indication of the fact that syn
... Show MoreThe study involved preparing a new compound by combining between 2-hydroxybenzaldehyde and (Z)-3-hydrazineylideneindolin-2-one resulting in Schiff bases and metal ions: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) forming stable minerals-based-Schiff complexes. The formation of resulting Schiff bases is detected spectrally using LC-Mss which gave corresponding results with theoretical results, 1H-NMR proves the founding of N=CH signal, FT-IR indicates the occurrence of imine band and UV-VIs mean is proved the ligand formation. On the other hand, minerals-based-Schiff was characterized using the same spectral means that relied with ligand (Schiff bases). Those means gave satisfactory results and proved the suggested distinguishable geometries.
... Show MoreA New ligand, N-(2-oxo-1,2- Dihydropyrimidin-4- ylcarbamothioyl) Acetamide (DPA) was prepared by reaction of iso thiosyanate derivative with Cytosine. The ligand has been characterized through elemental analysis, H1 NMR, C13NMR, FT-IR, and UV Visible spectra, such ligand’s transition metal complexes have been characterized through conductivity measurement, FT-IR, UV Visible spectra and magnetic susceptibility, all the complexes of this ligand are solid crystal and molar ratio (2:1) (ligand: metal). The form of molecular for these complexes octa hedral. The general formula [M(DPA)2Cl2], where M+2 = (Mn, Co, Ni, Cu, Zn, Cd, Hg).
Diabetes mellitus is a metabolic chronic disease, with global estimation increase in patient (around 100 million in 2030).The aim of the current study is to investigate vitamin D, C-reactive protein and estradiol levels in pre and postmenopausal Iraqi women with type 2 diabetes (T2MD).A total of 176 female distributed into two groups: the first included 90 women withT2MD (43 pre and 47 post-menopausal); the second group included 86 healthy subjects (41 pre and 45 postmenopausal) considered as control. This study has shown that women in premenopausal (20-40 years) had highly significant difference in the estradiol and vitamin D levels in diabetes subjects (62.192 ± 17.643pg/ml, 10.522 ± 1.958ng/ml) compared with healthy (131.793 ± 1
... Show MoreBiodiesel can be prepared from various types of vegetable oils or animal fats with the aid of a catalyst.
Calcium oxide (CaO) is one of the prospective heterogeneous catalysts for biodiesel synthesis. Modification
of CaO by impregnation on silica (SiO2) can improve the performance of CaO as catalyst. Egg shells and rice
husks as biomass waste can be used as raw materials for the preparation of the silica modified CaO catalyst.
The present study was directed to synthesize and characterize CaO impregnated SiO2 catalyst from biomass
waste and apply it as catalyst in biodiesel synthesis. The catalyst was synthesized by wet impregnation
method and characterized by x-ray diffraction, x-ray fluorescence, nitr