The evaluation of subsurface formations as applied to oil well drilling started around 50 years ago. Generally, the curent review articule includes all methods for coring, logging, testing, and sampling. Also the methods for deciphering logs and laboratory tests that are relevant to assessing formations beneath the surface, including a look at the fluids they contain are discussed. Casing is occasionally set in order to more precisely evaluate the formations; as a result, this procedure is also taken into account while evaluating the formations. The petrophysics of reservoir rocks is the branch of science interested in studying chemical and physical properties of permeable media and the components of reservoir rocks which are associated with the pore and fluid distribution. Throughout recent years, several studies have been conducted on rock properties, such as porosity, permeability, capillary pressure, hydrocarbon saturation, fluid properties, electrical resistivity, self-or natural-potential, and radioactivity of different types of rocks. These properties and their relationships are used to evaluate the presence or absence of commercial quantities of hydrocarbons in formations penetrated by, or lying near, the wellbore. A principal purpose of this paper is to review the history of development the most common techniques used to calculate petrophysics properties in the laboratory and field based primarily on the researchers and scientists own experience in this field.
Five subsurface sections covering the entire length of the Jeribe Limestone Formation (Early Middle Miocene) were studied from four oilfields in northern Iraq. It is hoped to unravel this formation microfacies ; depositional environment; diagenetic attributes and their parental processes; and the relationship between these processes and the observed porosity patterns. The microfacies were found to include mudstone, wackestone, packstone, and grainstone, which have been deposited respectively in open platform, restricted platform, and edge platform which represent the lagoonal environment, while the deposits of the lower parts of the Jeribe formation especially in well Hamrin- 2 reflect a deeper fore slope environment. By using the lithofac
... Show MoreA solid Phase Extraction (SPE) followed by HPLC-UV method is described for the simultaneous quantitative determination of nine priority pollutant phenols : Phenol, 2- and 4-Nitrophenol, 2,4-Dimethylphenol, 2-, 2,4-Di-, 2,4,6-Tri-, and Penta- chlorophenol, 4 Chloro-3-methylphenol. The phenols were separated using a C-18 column with UV detector at wave length of 280nm. The Flow of mobile phase was isocratic consisted of 50:50 Acetonitrile: phosphate buffer pH=7.1, column temperature 45 C°, Flow Rate 0.7 ml/min. Calibration curves were linear (R2 = 0.9961-0.9995). The RSDs (1.301-5.805)%, LOD(39.1- 412.4) µg/L, LOQ(118.5-1250.8) µg/L, the Robustness (1.55-4.89), Ruggedness (2.82-4.00), Repeatability (2.1-4.95), Recoveries%
... Show MoreIn this study, the optimum conditions for COD removal from petroleum refinery wastewater by using a combined electrocoagulation- electro-oxidation system were attained by Taguchi method. An orthogonal array experimental design (L18) which is of four controllable parameters including NaCl concentration, C.D. (current density), PH, and time (time of electrolysis) was employed. Chemical oxygen demand (COD) removal percentage was considered as the quality characteristics to be enhanced. Also, the value of turbidity and TDS (total dissolved solid) were estimated. The optimum levels of the studied parameters were determined precisely by implementing S/N analysis and analysis of variance (ANOVA). The optimum conditions were found to be NaCl = 2.5
... Show MoreIn this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current density (C
... Show MoreThis research deals with increasing the hardening and insulating the petroleum pipes against the conditions and erosion of different environments. So, basic material of epoxy has been mixed with Ceramic Nano Zirconia reinforcement material 35 nm with the percentages (0,1,2,3,4,5) %, whereas the paint basis of broken petroleum pipes was used to paint on it, then it was cut into dimensions (2 cm. × 2 cm.) and 0.3cm high. After the paint and percentages are completed, the samples were immersed into the paint. Then, the micro-hardness was checked according to Vickers method and thermal inspection of paint, which contained (Thermal conduction, thermal flux and Thermal diffusivity), the density of the painted samples was calculate
... Show MoreIn this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current densi
... Show Morethe influence of permeability tensor upon drainage of anisotropic soils under ponded water and steady recharge (rainfall) is theoretically investigated. Tensorial permeability has led to the formulation of mixed type partial differential equations. Since there is no analytical solution to this problem, the formulation is therefore solved numerically by the method of finite elements. The finite element formulation is implemented into a computer model which can be applied to any problem of seepage under steady state
conditions. Two different example problems representing two different flow conditions under full anisotropy have been studied. Results of the model for the isotropic case were checked against exact mathematical solutions de
The study aimed to evaluate the benefits of transferrin saturation percentage (TSAT) and serum ferritin in assessing body iron status, which can influence erythropoietin treatment in patients with ESRD. Forty end-stage renal disease patients on regular hemodialysis participated in this study. Clinical data were obtained. Serum iron, total iron binding capacity, transferrin saturation, ferritin, albumin, creatinine, and C-reactive protein were investigated. Thirty healthy people were enrolled as a control group. ESRD patients had a mean age of 45.1±13.9 years, with 60% being males. They exhibited significantly lower hematocrit (25.3±6.5%), and higher platelet (285.7±148.1x10^9/L) and WBC (9.4±3.1x10^9/L) counts compared to healthy contro
... Show MoreAtorvastatin have problem of very slightly aqueous solubility (0.1-1 mg/ml). Nano-suspension is used to enhance it’s of solubility and dissolution profile. The aim of this study is to formulate Atorvastatin as a nano-suspension to enhance its solubility due to increased surface area of exposed for dissolution medium, according to Noyes-Whitney equation.
Thirty one formulae were prepared to evaluate the effect of ; Type of polymer, polymer: drug ratio, speed of homogenization, temperature of preparation and inclusion of co-stabilizer in addition to the primary one; using solvent-anti-solvent precipitation method under high power of ultra-sonication.
... Show MorePorosity and pore structure are important characteristics of pharmaceutical tablets, since they influence the physical properties, such as mechanical strength, density and disintegration time. This paper is an attempt to investigate the pore structure of four different paracetamol tablets based on mercury porosimetry. The intrusion volumes of mercury were used to calculate the pore diameter, pore volume and pore size distribution. The result obtained indicate that the variation of the pore volume in the tablets followed the sequence:- S.D.I. Iraq? Pharmacare,Dubai-U.A.E.? Bron and Burk(UK) London?Lark Laboratories(India), while the variation of surface area followed the sequence:- S.D.I. Iraq? Lark Laboratories(India)? Pharmacare,Dubai-U.A
... Show More