Preferred Language
Articles
/
ijcpe-894
Artificial Intelligent Models for Detection and Prediction of Lost Circulation Events: A Review
...Show More Authors

Lost circulation or losses in drilling fluid is one of the most important problems in the oil and gas industry, and it appeared at the beginning of this industry, which caused many problems during the drilling process, which may lead to closing the well and stopping the drilling process. The drilling muds are relatively expensive, especially the muds that contain oil-based mud or that contain special additives, so it is not economically beneficial to waste and lose these muds. The treatment of drilling fluid losses is also somewhat expensive as a result of the wasted time that it caused, as well as the high cost of materials used in the treatment such as heavy materials, cement, and others. The best way to deal with drilling fluid losses is to prevent them. Drilling fluid loss is a complex problem that is difficult to predict using simple and traditional methods. Artificial intelligence represents a modern and accurate technology for solving complex problems such as drilling fluid loss. Artificial intelligence through supervised machine learning provides the possibility of predicting these losses before they occur based on field data such as drilling fluid properties, drilling parameters, rock properties, and geomechanical parameters that are related to the loss of circulation of the wells suffered from losses problem located in the same area.

   In this paper, several supervised machine learning models have been reviewed that were used for detecting and predicting of loss of drilling fluids during the drilling process. The paper provides an inclusive review of drilling fluid prediction and detection from simplest to more complected intelligent models.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Oct 10 2025
Journal Name
Pharmakeftiki
Genetic polymorphisms and adverse effects that affect the natalizumab clinical response: a review
...Show More Authors

The clinical response to natalizumab in patients with multiple sclerosis (MS) may be significantly influenced by genetic variation. Mutations in genes related to the drug’s mechanism of action or the pathological milieu of MS can contribute substantially to interindividual differences in treatment outcomes. This review aims to provide an overview of previous studies that have examined genetic polymorphisms associated with the clinical efficacy of natalizumab. A systematic literature search was conducted across the PubMed, Google Scholar, and ResearchGate databases using targeted keywords relevant to the subject matter. Several genetic loci were found to be linked to natalizumab responsiveness, including the integrin subunit alpha 4 (ITGA4

... Show More
View Publication Preview PDF
Publication Date
Wed May 26 2021
Journal Name
Energies
Rotational Piezoelectric Energy Harvesting: A Comprehensive Review on Excitation Elements, Designs, and Performances
...Show More Authors

Rotational Piezoelectric Energy Harvesting (RPZTEH) is widely used due to mechanical rotational input power availability in industrial and natural environments. This paper reviews the recent studies and research in RPZTEH based on its excitation elements and design and their influence on performance. It presents different groups for comparison according to their mechanical inputs and applications, such as fluid (air or water) movement, human motion, rotational vehicle tires, and other rotational operational principal including gears. The work emphasises the discussion of different types of excitations elements, such as mass weight, magnetic force, gravity force, centrifugal force, gears teeth, and impact force, to show their effect

... Show More
View Publication
Scopus (19)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Fuel
Matrix acidizing in carbonate rocks and the impact on geomechanical properties: A review
...Show More Authors

Acid treatment is a widely used stimulation technique in the petroleum industry. Matrix acidizing is regarded as an effective and efficient acidizing technique for carbonate formations that leads to increase the fracture propagation, repair formation damage, and increase the permeability of carbonate rocks. Generally, the injected acid dissolves into the rock minerals and generates wormholes that modify the rock structure and enhance hydrocarbon production. However, one of the key issues is the associated degradation in the mechanical properties of carbonate rocks caused by the generated wormholes, which may significantly reduce the elastic properties and hardness of rocks. There have been several experimental and simulation studies regardi

... Show More
View Publication
Scopus (37)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Sat Jul 06 2024
Journal Name
Multimedia Tools And Applications
Text classification based on optimization feature selection methods: a review and future directions
...Show More Authors

A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (8)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Response surface methodology: A review on its applications and challenges in microbial cultures
...Show More Authors

View Publication
Scopus (239)
Crossref (183)
Scopus Clarivate Crossref
Publication Date
Tue Mar 05 2024
Journal Name
Journal Of Biotechnology Research Center,
A review of the Prevalence of Enterohemorrhagic E. coli in Iraq
...Show More Authors

Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Crossref
Publication Date
Thu Oct 22 2020
Journal Name
2020 4th International Symposium On Multidisciplinary Studies And Innovative Technologies (ismsit)
Artificial Intelligence in Smart Agriculture: Modified Evolutionary Optimization Approach for Plant Disease Identification
...Show More Authors

View Publication
Scopus (10)
Crossref (6)
Scopus Crossref
Publication Date
Thu Aug 13 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
A comparison of some forecasting models to forecast the number of old people in Iraqi retirement homes
...Show More Authors

Statistical methods of forecasting have applied with the intention of constructing a model to predict the number of the old aged people in retirement homes in Iraq. They were based on the monthly data of old aged people in Baghdad and the governorates except for the Kurdistan region from 2016 to 2019. Using Box-Jenkins methodology, the stationarity of the series was examined. The appropriate model order was determined, the parameters were estimated, the significance was tested, adequacy of the model was checked, and then the best model of prediction was used. The best model for forecasting according to criteria of (Normalized BIC, MAPE, RMSE) is ARIMA (0, 1, 2).

Scopus (1)
Scopus
Publication Date
Sat Aug 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
A comparison of some forecasting models to forecast the number of old people in Iraqi retirement homes
...Show More Authors

Statistical methods of forecasting have applied with the intention of constructing a model to predict the number of the old aged people in retirement homes in Iraq. They were based on the monthly data of old aged people in Baghdad and the governorates except for the Kurdistan region from 2016 to 2019. Using BoxJenkins methodology, the stationarity of the series was examined. The appropriate model order was determined, the parameters were estimated, the significance was tested, adequacy of the model was checked, and then the best model of prediction was used. The best model for forecasting according to criteria of (Normalized BIC, MAPE, RMSE) is ARIMA (0, 1, 2)