Oil well drilling fluid rheology, lubricity, swelling, and fluid loss control are all critical factors to take into account before beginning the hole's construction. Drilling fluids can be made smoother, more cost-effective, and more efficient by investigating and evaluating the effects of various nanoparticles including aluminum oxide (Al2O3) and iron oxide (Fe2O3) on their performance. A drilling fluid's performance can be assessed by comparing its baseline characteristics to those of nanoparticle (NPs) enhanced fluids. It was found that the drilling mud contained NPs in concentrations of 0,0.25, 0. 5, 0.75 and 1 g. According to the results, when drilling fluid was used without NPs, the coefficient of fraction (CoF) was 44%, when added Al2O3 NP and Fe2O3 NP at 0.75g reduced CoF by 31% and 33% respectively. When Al2O3 and Fe2O3 NPs were used, particularly at a concentration of 1g, the amount of mud filtration decreased from 13.5ml to 9.3 ml and 8.5 ml respectively. Additional improvements rheological properties as well as swelling when Fe2O3NPs and Al2O3 NPs were added at 1g. Overall, it was found that adding NPs to the Lignosulfonate-WBM at a concentration of 1g can improve rheological, swelling, and filtration properties as well as lubrication at 0.75g.
Nanoparticles of Pb1-xCdxS within the composition of 0≤x≤1 were prepared from the reaction of aqueous solution of cadmium acetate, lead acetate, thiourea, and NaOH by chemical co-precipitation. The prepared samples were characterized by UV-Vis spectroscopy(in the range 300-1100nm) to study the optical properties, AFM and SEM to check the surface morphology(Roughness average and shape) and the particle size. XRD technique was used to determine the crystalline structure, XRD technique was used to determine the purity of the phase and the crystalline structure, The crystalline size average of the nanoparticles have been found to be 20.7, 15.48, 11.9, 11.8, and 13.65 nm for PbS, Pb0.75Cd0.25S,
... Show MoreBackground: The most widely used material for fabrication of denture base is poly methyl methacrylate, despite its popularity, the main problems associated with it as a denture base material are poor strength particularly under fatigue failure inside the patient mouth, impact failure outside the patient mouth, which are the main causes for fracture of denture, several studies was done to increase mechanical properties of denture base. The present study was conducted to evaluate and compare the effect of addition single walled carbon nanotubes in different concentrations to polymethyl methacrylate on some mechanical properties (surface hardness, surface roughness, impact strength and transverse strength). Materials and methods: Forty eight
... Show MoreIn this research TiO2 nano-powder was prepared by a spray pyrolysis technique and then adds to the TiO2 powder with particle size (0.523 μm) in ratio (0, 5, 10, 15 at %) atomic percentage, and then deposition of the mixture on the stainless steel 316 L substrate in order to use in medical and industrial applications.
Structure properties including x-ray diffraction (XRD) and scanning electron microscope (SEM0, also some of mechanical properties and the effect of thermal annealing in different temperature have been studied. The results show that the particle size of a prepared nano-powder was 50 up to 75 nm from SEM, and the crystal structure of the powders (original and nano powder) was rutile with tetragonal cell. An improvement in
Sweet pepper (Capsicum annuum L.) is an economically important vegetable crop. Wilt disease caused by Fusarium oxysporum f. sp. capsici is a specific pathogen that affects the pepper. Four isolates of F. oxysporum f. sp. capsici Fo3, Fo6, Fo7 and Fo8 were obtained from diseased pepper plants that were collected from different pepper fields in Baghdad. Fo6 isolate that has high pathogenicity to pepper seeds, Trichoderma harzianum (Th) was tested in vitro against F. oxysporum f. sp. capsici showed a high inhibition rate for the isolate Fo6, the concentration of chelated iron Fe-EDDHA 0.5% reduced the radial growth of Fo6 whi
... Show MoreSystemic lupus Erythematosus is an autoimmune disease of unknown aetiology affecting multiple organ system. Reactive nitrogen and oxygen species are claimed to play a role in this disease. However, the potential of Nitrosative/Oxidative Stress to elicit an autoimmune, response remain till now largely unexplored in humans. This study was done to investigate the status and contribution of nitrosative/oxidative stress in Iraqi patients for systemic lupus erythematosus. Blood samples from 19 patients with systemic lupus erythematosus and 19 age-and sex- matched apparently healthy controls were evaluated for serum levels of nitrosative/oxidative stress markers including nitric oxide, peroxynitrite and malondialdehyde. Nitric oxide levels were
... Show MoreThin films of In2O3-CdO at various CdO contents (0.01, 0.02, 0.03, 0.04 and 0.05) were deposited on transparent substrate which is glass using chemical spray pyrolysis deposition method at substrate temperature 150oC. The structural properties was studied to characterize the prepared materials by XRD analysis. Surface morphology has been illustrated using scanning electron microscopy which proved the nanosize of prepared materials. This materials have been used as gas sensor for toxic gas which is hydrogen sulfide H2S. The sensitivity and response speed have been investigated with addition of CdO nanoparticles. © 2021, S.C. Virtual Company of Phisics S.R.L. All rights reserved.
Different cooking conditions were examined for aluminum content in food cooked while wrapped with aluminum foil. The influence of each anticipated factor (the acidity of the cooking medium, type of acids normally used in cuisines namely acetic and tartaric acids, various cooking temperatures, influence of the presence of sodium chloride salt, the effect of cooking oil, and the length of time of cooking) was studied thoroughly as a function of aluminum degraded out of the aluminum foils to the medium. The experimental samples were digested with nitric acid upon fulfillment of examining each factor separately before quantifying aluminum with the sensitive technique of atomic absorption spectroscopy. The outcomes of the study have shown that t
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show More