Pressure retarded osmosis (PRO) can be considered as one of the methods for utilizing osmotic power, which is a membrane-based technology. Mathematical modeling plays an essential part in the development and optimization of PRO energy-generating systems. In this research, a mathematical model was developed for the hollow fiber module to predict the power density and the permeate water flux theoretically. Sodium chloride solution was employed as the feed and draw solution. Different operating parameters, draw solution concentration (1 and 2 M), the flow rate of draw solution (2, 3, and 4 L/min), and applied hydraulic pressure difference (0 - 90 bar) was used to evaluate the performance of PRO process of a hollow fiber module. The effect of these operational parameters was investigated on the theoretical permeate water flux and power density. According to the theoretical results, the permeate water flux and the power density increased with increasing the concentration of draw solution and the flow rate of the draw solution. While decreased with increasing the feed solution concentration. By increasing the applied hydraulic pressure on the draw solution, the water flux decreased and the produced power density increased. The maximum power density and the corresponding permeate water flux of 2 M NaCl draw solution was approximately 16.414 W/m2 and 11.818 LMH respectively, which occurs at an applied hydraulic pressure of 50 bar.
Globalisation and rapid environmental change have created many challenges for public and private organisations across Iraq as a developing country, particularly in the higher education sector. This includes, for example, decreases in government funding; increased demand for higher education; a need for economic transformation, and related competitiveness of organizations. Such challenges require exceptional leaders and strategic planning in order to take action to improve. In Iraq, the higher education sector is still one of the main foundations in progressing the knowledge economy. Studies into leadership style, strategic planning processes, and the importance of leadership and organisational culture to an organisation’s success have bee
... Show MoreIt is through a review of conversion of vegetable oils into glycidyl ethers focusing on their roles in achieving sustainability and improved epoxy resin performance. It involves functionalization of triglycerides in the form of epoxidation followed by glycidylation and yields bio-based monomers having improved mechanical as well as thermal properties. The review covers the underlying chemistry, production drivers, industrial applications, and future issues, supported by quantitative data and comparative studies. In addition, it integrates recent data on catalyst choice, feedstock flexibility, and environmental performance factors of bio-based resins, indicating their suitability for replacing traditional petroleum-based components.<
... Show MoreTungsten inert gas arc welding–based shaped metal deposition is a novel additive manufacturing technology which can be used for fabricating solid dense parts by melting a cold wire on a substrate in a layer-by-layer manner via continuous DC arc heat. The shaped metal deposition method would be an alternative way to traditional manufacturing methods, especially for complex featured and large-scale solid parts manufacturing, and it is particularly used for aerospace structural components, manufacturing, and repairing of die/molds and middle-sized dense parts. This article presents the designing, constructing, and controlling of an additive manufacturing system using tungsten inert gas plus wire–based shaped metal deposition metho
... Show MoreIn this research want to make analysis for some indicators and it's classifications that related with the teaching process and the scientific level for graduate studies in the university by using analysis of variance for ranked data for repeated measurements instead of the ordinary analysis of variance . We reach many conclusions for the
important classifications for each indicator that has affected on the teaching process. &nb
... Show MoreAbstract
Metal cutting processes still represent the largest class of manufacturing operations. Turning is the most commonly employed material removal process. This research focuses on analysis of the thermal field of the oblique machining process. Finite element method (FEM) software DEFORM 3D V10.2 was used together with experimental work carried out using infrared image equipment, which include both hardware and software simulations. The thermal experiments are conducted with AA6063-T6, using different tool obliquity, cutting speeds and feed rates. The results show that the temperature relatively decreased when tool obliquity increases at different cutting speeds and feed rates, also it
... Show MoreThe Gas Assisted Gravity Drainage (GAGD) process has become one of the most important processes to enhance oil recovery in both secondary and tertiary recovery stages and through immiscible and miscible modes. Its advantages came from the ability to provide gravity-stable oil displacement for improving oil recovery, when compared with conventional gas injection methods such as Continuous Gas Injection (CGI) and Water – Alternative Gas (WAG). Vertical injectors for CO2 gas were placed at the top of the reservoir to form a gas cap which drives the oil towards the horizontal oil producing wells which are located above the oil-water-contact. The GAGD process was developed and tested in vertical wells to increase oil r
... Show MoreAbstract
Lightweight materials is used in the sheet metal hydroforming process, because it can be adapted to the manufacturing of complex structural components into a single body with high structural stiffness. Sheet hydroforming has been successfully developed in industry such as in the manufacturing of the components of automotive.The aim of this study is to simulate the experimental results ( such as the amount of pressure required to hydroforming process, stresses, and strains distribution) with results of finite element analyses (FEA) (ANSYS 11) for aluminum alloy (AA5652) sheets with thickness (1.2mm) before heat treatm
... Show MoreThe current research creates an overall relative analysis concerning the estimation of Meixner process parameters via the wavelet packet transform. Of noteworthy presentation relevance, it compares the moment method and the wavelet packet estimator for the four parameters of the Meixner process. In this paper, the research focuses on finding the best threshold value using the square root log and modified square root log methods with the wavelet packets in the presence of noise to enhance the efficiency and effectiveness of the denoising process for the financial asset market signal. In this regard, a simulation study compares the performance of moment estimation and wavelet packets for different sample sizes. The results show that wavelet p
... Show MoreLeaching process applied for the extraction of bio active compounds from dried roots of (Elecampane) Inula helenium. Ethanol, hexane and distillated water were used as solvents. Roots were soaked with ethanol (5% w/v) with various concentration of ethanol (30 to 98%) at one day to know effect concentration of the solvent with concentration of bio active compound in Inula helenium. The same procedure was done using hexane as solvent. Also distilled water was used as solvent for extraction 5%(w/v) where plant material was soaked in water at different temperatures (25, 40, 65, 80, and 90) C. In all solvents undertaken, the effect of time duration on active ingredient (Thymol, Isoalatolactone, Alatolactone, 10-isobutyryl-oxy 8-9-epoxy thymol is
... Show More