Pressure retarded osmosis (PRO) can be considered as one of the methods for utilizing osmotic power, which is a membrane-based technology. Mathematical modeling plays an essential part in the development and optimization of PRO energy-generating systems. In this research, a mathematical model was developed for the hollow fiber module to predict the power density and the permeate water flux theoretically. Sodium chloride solution was employed as the feed and draw solution. Different operating parameters, draw solution concentration (1 and 2 M), the flow rate of draw solution (2, 3, and 4 L/min), and applied hydraulic pressure difference (0 - 90 bar) was used to evaluate the performance of PRO process of a hollow fiber module. The effect of these operational parameters was investigated on the theoretical permeate water flux and power density. According to the theoretical results, the permeate water flux and the power density increased with increasing the concentration of draw solution and the flow rate of the draw solution. While decreased with increasing the feed solution concentration. By increasing the applied hydraulic pressure on the draw solution, the water flux decreased and the produced power density increased. The maximum power density and the corresponding permeate water flux of 2 M NaCl draw solution was approximately 16.414 W/m2 and 11.818 LMH respectively, which occurs at an applied hydraulic pressure of 50 bar.
In the present work, the thermo-fluid characteristics of a heat exchanger formed of helical coiled tubes immersed in cold water are investigated experimentally. Two types of helical coiled tube are tested, a conventional vertical single helical coiled tube and a new triple vertical helical coiled tube in parallel connection called as meshed coils. The effect of hot water flow rates inside the tubes (ranges from 2.67 to 7.08 l/min), and its inlet temperatures (namely 50, 60, 70 and 80 °C) are investigated. The experimental results show that increasing the flow rate inside the meshed coils leads to decrease the temperature difference between inlet and outlet. An enhancement of heat transfer for meshed coils compared to single coil has been n
... Show MoreThis research includes the use of an artificial intelligence algorithm, which is one of the algorithms of biological systems which is the algorithm of genetic regulatory networks (GRNs), which is a dynamic system for a group of variables representing space within time. To construct this biological system, we use (ODEs) and to analyze the stationarity of the model we use Euler's method. And through the factors that affect the process of gene expression in terms of inhibition and activation of the transcription process on DNA, we will use TF transcription factors. The current research aims to use the latest methods of the artificial intelligence algorithm. To apply Gene Regulation Networks (GRNs), we used a progr
... Show MoreA mathematical method with a new algorithm with the aid of Matlab language is proposed to compute the linear equivalence (or the recursion length) of the pseudo-random key-stream periodic sequences using Fourier transform. The proposed method enables the computation of the linear equivalence to determine the degree of the complexity of any binary or real periodic sequences produced from linear or nonlinear key-stream generators. The procedure can be used with comparatively greater computational ease and efficiency. The results of this algorithm are compared with Berlekamp-Massey (BM) method and good results are obtained where the results of the Fourier transform are more accurate than those of (BM) method for computing the linear equivalenc
... Show MoreFracture pressure gradient prediction is complementary in well design and it is must be considered in selecting the safe mud weight, cement design, and determine the optimal casing seat to minimize the common drilling problems. The exact fracture pressure gradient value obtained from tests on the well while drilling such as leak-off test, formation integrity test, cement squeeze ... etc.; however, to minimize the total cost of drilling, there are several methods could be used to calculate fracture pressure gradient classified into two groups: the first one depend on Poisson’s ratio of the rocks and the second is fully empirical methods. In this research, the methods selected are Huubert and willis, Cesaroni I, Cesaroni II,
... Show MoreIn recent years the interest in fractured reservoirs has grown. The awareness has increased analysis of the role played by fractures in petroleum reservoir production and recovery. Since most Iraqi reservoirs are fractured carbonate rocks. Much effort was devoted to well modeling of fractured reservoirs and the impacts on production. However, turning that modeling into field development decisions goes through reservoir simulation. Therefore accurate modeling is required for more viable economic decision. Iraqi mature field being used as our case study. The key point for developing the mature field is approving the reservoir model that going to be used for future predictions. This can
The influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.
In this study, the feasibility of Forward–Reverse osmosis processes was investigated for treating the oily wastewater. The first stage was applied forward osmosis process to recover pure water from oily wastewater. Sodium chloride (NaCl) and magnesium chloride (MgCl2) salts were used as draw solutions and the membrane that was used in forward osmosis (FO) process was cellulose triacetate (CTA) membrane. The operating parameters studied were: draw solution concentrations (0.25 – 0.75 M), oil concentration in feed solution (FS) (100-1000 ppm), the temperature of FS and draw solution (DS) (30 - 45 °C), pH of FS (4-10) and the flow rate of both DS and FS (20 - 60 l/h). It was found that the water flux and oil concentration in FS increas
... Show More