The disposal of textile effluents to the surface water bodies represents the critical issue especially these effluents can have negative impacts on such bodies due to the presence of dyes in their composition. Biological remediation methods like constructed wetlands are more cost-effective and environmental friendly technique in comparison with traditional methods. The ability of vertical subsurface flow constructed wetlands units for treating of simulated wastewater polluted with Congo red dye has been studied in this work. The units were packed with waterworks sludge bed that either be unplanted or planted with Phragmites australis and Typha domingensis. The efficacy of present units was evaluated by monitoring of DO, Temperature, COD and dye concentration in the effluents under the variation of detention time (1-5 day) and dye concentration (10-40 mg/L). The maximum removal of dye and COD were 98 and 82% respectively for 10 mg/L of Congo red dye after five-day hydraulic retention time (HRT). The results have shown that the removal of COD and dye concentration significantly increased with higher contact time and lower dye concentration. The values of monitored parameters adopted to evaluate the wastewater quality (i.e. DO, COD and Congo red dye) are satisfied the requirements of irrigation water. The dye concentration variation in the effluent with contact time was formulated efficiently by Grau kinetic model. Functional groups (specified by FT-IR analysis) have a remarkable role in the entrapment of dye on the waterworks sludge bed.
Two‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤
Nanoparticles of humic acid and iron oxide were impregnated on the inert sand to produce sorbent for treating groundwater contained of cadmium and copper ions by technology of permeable reactive barrier (PRB). Sewage sludge was the source of the humic acid to prepare the coated sand by humic acid—iron oxide (CSHAIO) sorbent; so, this work is consistent with sustainable development. For 10 mg/L metal concentration, batch tests at speed of 200 rpm signified that the removal efficiencies are greater than 90% at sorbent dosage 0.25 g/ 50 mL, pH 6 and contact time 1 h. The kinetic data was well described by the Pseudo first-order model indicating that physicosorption is the predominant mechanism. The maximum adsorption capacities (qmax) were c
... Show MoreThe current research aims to prepare a proposed Programmebased sensory integration theory for remediating some developmental learning disabilities among children, researchers prepared a Programme based on sensory integration through reviewing studies related to the research topic that can be practicedby some active teaching strategies (cooperative learning, peer learning, Role-playing, and educational stories). The Finalformat consists of(39) training sessions.
A new bio-electrochemical system was proposed for simultaneous removal of organic matters and salinity from actual domestic wastewater and synthetically prepared saline water, respectively. The performance of a three-chambered microbial osmotic fuel cell (MOFC) provided with forward osmosis (FO) membrane and cation exchange membrane (CEM) was evaluated with respect to the chemical oxygen demand (COD) removal from wastewater, electricity generation, and desalination of saline water. The MOFC wasinoculated with activated sludge and fueled with actual domestic wastewater. Results revealed that maximum removal efficiency of COD from wastewater, TDS removal efficiency from saline water, power density, and current density were
... Show MoreAlthough allowable amounts of glycol contamination in diesel engine oil, no research has been conducted on how these levels and varying loads affect engine performance. The research used a four-stroke diesel engine to investigate the effect of different glycol contamination levels (0, 120, and 220 ppm) under two engine loads (4.5 and 9 kW). Brake specific fuel consumption, brake thermal efficiency, friction power, and exhaust gas temperature were measured to determine the engine performance. The experiment used the factorial arrangement in a completely randomized design (CRD) with three replicates. Increasing the contamination levels from 0 to 120 and then to 220 ppm under constant engine load significantly increased brake specific fuel con
... Show MoreThree hundred samples of washing water of vegetables were collected from women aged ( 15- 6o) years from different area in Baghdad governorate and its suburbs include two rural area ( Jaddria in Baghdad university and Al –Wagif in Rashdia) and two urbane area (Mansoure and Escan) . The samples were examined by precipitation method and then by staining method ( Lugols –Iodine stain) . The percentage of infection of intestinal parasites 36.3% include 15.3% for urban area and 57.3% in rural area and a significant difference was found between those groups . .The results showed also increased in the prevalence of parasitic infection in group age (15 -30) year .Also the results showed only 109 sample infected with eight specie
... Show More