The Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current density, and the minimum Phenol concentration obtained after 6 h of electrolysis at 8 mA/cm2 is equal to 7.82 ppm starting from an initial concentration about 155 ppm. The results obtained from the kinetic study of Phenol oxidation at different current density showed that the reaction followed pseudo first-order kinetics regarding current density. Energetic parameters like specific power consumption and current efficiency were also estimated at different current density. The results showed that an increase in current density caused an increase in the specific power consumption of the process and decreased current efficiency.
Corrosion behavior of aluminum alloy 7025 was investigated in hydrochloric acid (pH=1) containing 0.6 mol.dm-3 NaCl in the existence and absence of diverse concentrations of sulphamethoxazole as environmentally friendly corrosion inhibitor over the temperature range (298-313)K. Electrochemical polarization method using potentiostatic technique was employed. The inhibition efficiency has been raised with increased sulphamethoxazole concentration but lessened at temperature increases. The highest efficiency value was 96.5 at 298 K and 2 x10-4 mol.dm-3 concentration of sulphamethoxazole. The sulphamethoxazole adsorption was agreed with Langmuir adsorption isotherm. Some thermodynamic parameter (△Gads) and activation energy (Ea) were determin
... Show MoreThe aim of this paper is to present a method for solving third order ordinary differential equations with two point boundary condition , we propose two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by compared with conventional method .
In this paper, an approximate solution of nonlinear two points boundary variational problem is presented. Boubaker polynomials have been utilized to reduce these problems into quadratic programming problem. The convergence of this polynomial has been verified; also different numerical examples were given to show the applicability and validity of this method.
This research involves the synthesis of some sulphanyl benzimidazole derivatives (Ia-c), which were prepared from reaction of 2-mercaptobenzimidazole substituted benzyl halide, and structures were identified by spectral methods[FTIR, 1H-NMR and 13C-NMR].These compounds were investigated as corrosion inhibitors for carbon steel in 1M H2SO4 solution using weight loss, potentiostatic polarization methods; obtained results showed that the sulphanyl benzimidazole derivatives retard both cathodic and anodic reactions in acidic media, by virtue of adsorption on the carbon steel surface. This adsorption obeyed Langmuir’s adsorption isotherm. The inhibition efficiency of (Ia-c) ranging between (65-92) %. By using different Ib derivative conc
... Show MoreThe bandwidth requirements of the telecommunication network users increased rapidly during the last decades. Optical access technologies must provide the bandwidth demand for each user.The passive optical
The paper presents a highly accurate power flow solution, reducing the possibility of ending at local minima, by using Real-Coded Genetic Algorithm (RCGA) with system reduction and restoration. The proposed method (RCGA) is modified to reduce the total computing time by reducing the system in size to that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time for the solution. Then the system is restored by calculating the voltages of the load buses in terms
... Show MoreABSTRACT Background: resin cement type and intraoral temperature fluctuations may affect the fracture performance of successful zirconia restorations. To fill this gap, the purpose of this study is to evaluate and compare the influence of thermocycling on fracture resistance and mode of failure of monolithic zirconia crowns luted with Rely X™ U200 and BreezeTMself-adhesive resin cements as well as imply the effect of adding 2 % of polylysine (PLS) to these cements. Materials: 64 maxillary premolars were milled out of zirconia blocks using CAD/CAM milling system. They were divided into four groups (n = 16) according to the cement type. Four different resin cements were used (RelyXTMU200, Breeze™, RelyX™ U200 with 2 % PLS
... Show More