The Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current density, and the minimum Phenol concentration obtained after 6 h of electrolysis at 8 mA/cm2 is equal to 7.82 ppm starting from an initial concentration about 155 ppm. The results obtained from the kinetic study of Phenol oxidation at different current density showed that the reaction followed pseudo first-order kinetics regarding current density. Energetic parameters like specific power consumption and current efficiency were also estimated at different current density. The results showed that an increase in current density caused an increase in the specific power consumption of the process and decreased current efficiency.
The aim of the present study was to isolated the Enterococcus spp. from milk samples of cow and vaginal swabs from aborted women and patient women in Baghdad during September 2016 to april 2017. All 100 milk sample collecting was carried out on California Mastitis Test (CMT) and the positive Percentage of CMT reactions was 5% and the percentage of Enterococcus isolates from mastitic milk was 60% and 30% from nonmasitic milk. The prevalence of Enterococcus spp was 31% of milk samples and the prevalence of Enterococcus spp. Isolates were 67.74% of the isolates of cow milk samples were Enterococcus faecalis, 25.80% was Group D and 6.45% was non groupable while Enterococcus spp. isolates from aborted women samples were 20% and all isolated was
... Show MoreThe ligand [Potassium (E)-(4-(((2-((1-(3-aminophenyl) ethylidene) amino)-4-oxo-1,4- dihydropteridin-6-yl) methyl) amino)benzoyl)-L-glutamate] was prepared from the condensation reaction of folic acid with (3-aminoacetophenone) through Schiff reaction to give a new Schiff base ligand [H2L]. The ligand [H2L] was characterized by elemental analysis CHN, atomic absorption (A.A), (FT-I.R.), (U.V.-Vis), TLC, E.S. mass (for spectroscopes), molar conductance, and melting point. The new Schiff base ligand [H2L], reacts with Mn(II), Co(II), Ni(II), Cu(II), Cr(III) and Cd(II) metal ions and (2-aminophenol), (metal : derivative ligand : 2-aminophenol) to give a series of new mixed complexes in the general formula:- K3[M2(HL)(HA)2], (where M=Mn(II) and
... Show Moresynthesis and characterization of New schiff base Ligand Derived from 4-amino anti pyrine and it's complexes with some Metal lons and theirAntibacterial studies
BACKGROUND: Volar Barton’s fracture is a shearing mechanism of injury that results in fracture and subluxation of distal end radius in which volar rim of the distal radius is displaced with hand and carpus. Open reduction and volar plate fixation ensure more stable change of displacement, preservation of reduction, and early mobilization. AIM: This study aims to assess the functional and radiological outcome results of volar Barton’s fracture treated by volar buttress plate using the demerit points system of Gartland and Werley. PATIENTS AND METHODS: This study is a prospective descriptive observational study on 32 patients who were treated with ORIF by volar buttress plate for isolated volar Barton’s fractures between Fe
... Show MoreNanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application to more efficient carbon storage. We present a series of contact angle (θ) investigations on initially oil-wet calcite surfaces to quantify the performance of hydrophilic silica nanoparticles for wettability alteration. These tests are conducted at typical in-situ high pressure (CO2), temperature and salinity conditions. A high pressure–temperature (P/T) optical cell with a regulated tilted surface was used to measure the advancing and receding contact angles at the desired conditions. The results showed that silica nanofluids can alte
... Show MoreThis research has presented a solution to the problem faced by alloys: the corrosion problem, by reducing corrosion and enhancing protection by using an inhibitor (Schiff base). The inhibitor (Schiff base) was synthesized by reacting of the substrates materials (4-dimethylaminobenzaldehyde and 4-aminoantipyrine). It was diagnosed by infrared technology IR, where the IR spectrum and through the visible beams proved that the Schiff base was well formed and with high purity. The corrosion behavior of carbon steel and stainless steel in a saline medium (artificial seawater 3.5%NaCl) before and after using the inhibitor at four temperatures: 20, 30, 40, and 50 C° was studied by using three electrodes potentiostat. The corrosion behavior was
... Show MoreOily carwash wastewater is a high organic and chemical wastewater. This paper targeted to investigate a treatment to decrease the water consumption and contaminants in car-washing stations. Electrocoagulation combined with ultrasonic energy (Sono-Electrocoagulation) was suggested so that the carwash wastewater is treated to be reused. The effect of both the voltage and time of treatment on the removal of COD, turbidity, conductivity, and total dissolved solids (TDS) were studied at constant initial pH 7 and electrode distance 2 cm. The results showed the best results of removal COD, turbidity, TDS, and reduce electrical conductivity is when the voltage was 30 V and a treatment time of 90 minutes.
<
... Show MoreThis paper presents the Taguchi approach for optimization of hardness for shape memory alloy (Cu-Al-Ni) . The influence of powder metallurgy parameters on hardness has been investigated. Taguchi technique and ANOVA were used for analysis. Nine experimental runs based on Taguchi’s L9 orthogonal array were performed (OA),for two parameters was study (Pressure and sintering temperature) for three different levels (300 ,500 and 700) MPa ,(700 ,800 and 900)oC respectively . Main effect, signal-to-noise (S/N) ratio was study, and analysis of variance (ANOVA) using to investigate the micro-hardness characteristics of the shape memory alloy .after application the result of study shown the hei
... Show More