The Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, and fluid saturation in carbonate rocks. A strong linear correlation between P-wave velocity and S-wave velocity and between P-wave velocity and density rock was found. The resulting linear equations can be used to estimate P-wave velocity from the S-wave velocity in the case of both. The results of multiple regression analysis indicated that the density, porosity, water-saturated, and shear wave velocity (VS) are strongly related to Vp.
<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreCurrently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreIn this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
In this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.
the model was estimated on simulati
... Show MoreThe transfer of chemical pollutants from bottled water into water due to heat, sunlight and poor storage is one of the most serious threats to human health around the world, the objective of this study was to estimate the pH value and the transport of heavy metals from plastic bottles to water, for this purpose, 30 bottles of water for 10 local brands were collected and divided into three groups, the first was left at room temperature 25°C, The second was placed in a heat oven at 25°C and the third in another oven at 50°C for two weeks. The results showed significant differences at (P<0.05) between water samples, pH value and concentrations of heavy metals (Sb, Pb, Ni, Cu, Cr, Cd and Fe) we
... Show MoreUm-Al-Naaj region in Al-Hawiezah Marsh, Southern Iraq was chosen to study the environmental variations of some water characteristics during 2008, seasonally. The results showed clear seasonal changes in values of some environmental variables (temperature, depth, light penetration, turbidity, total suspended solids, pH, dissolved oxygen, reactive phosphate, reactive nitrite, and reactive nitrate), while there were no clear seasonal changes in electrical conductivity and salinity values. In addition, high nutrients concentrations and light penetration were noted. Statistical analysis showed significant positive relationship between air and water temperature; electrical conductivity and salinity. Water turbidity was significantly affecte
... Show MoreHard water does not pose a threat to human health but may cause precipitation of soap or results stone in the boilers. These reactions are caused by the high concentrations of Ca and Mg. In the industry they are undesirable because of higher fuel consumption for industrial use .Electromagnetic polarization water treatment is a method which can be used for increasing the precipitation of Ca 2+ and CO3 2- ions in hard water to form CaCO3 which leads to decrease the water hardness is research has been conducted by changing the number of coil turns and voltage of the system. The spectroscopy electron microscope was used for imaging the produced crystals. Results of the investigation indicated that
... Show MoreObjective: To identify of the effect of the different concentrations of the special liquid (for mixing the investment, Gilvest)
and mixed with water/powder ratio on setting time of phosphate–bonded investment.
Method and materials: The present study is (60) specimens made from phosphate bonded investment divided into (4)
groups (control and experimental groups), (15) specimens for each group. The Gillmore needle device is used to setting
time of phosphate bonded investment mixed with different concentration of Gilvest and water.
Results: Showed that there is a high significant difference (P<0.01) between each groups in the ANOVA test and a
significant difference (P<0.05) between the group (A) and control group i