The research discussed the possibility of adsorption of Brilliant Blue Dye (BBD) from wastewater using 13X zeolite adsorbent, which is considered a byproduct of the production process of potassium carbonate from Iraqi potash raw materials. The 13X zeolite adsorbent was prepared and characterized by X-ray diffraction that showed a clear match with the standard 13X zeolite. The crystallinity rate was 82.15% and the crystal zeolite size was 5.29 nm. The surface area and pore volume of the obtained 13X zeolite were estimated. The prepared 13X zeolite showed the ability to remove BBD contaminant from wastewater at concentrations 5 to 50 ppm and the removal reached 96.60% at the lower pollutant concentration. Adsorption measurements versus time showed 48.18% removal of the dye during just the first half-hour and the maximum removal closest to the removal at the equilibrium after one and half hour. Langmuir isotherm was described the adsorption equilibrium data with a maximum adsorption capacity of 93.46 mg/g and the kinetics data of the adsorption process was followed the pseudo-second-order.
In this work, enhancement to the fluorescence characteristics of laser dye solutions hosting highly-pure titanium dioxide nanoparticles as random gain media. This was achieved by coating two opposite sides of the cells containing these media with nanostructured thin films of highly-pure titanium dioxide. Two laser dyes; Rhodamine B and Coumarin 102, were used to prepare solutions in hexanol and methanol, respectively, as hosts for the nanoparticles. The nanoparticles and thin films were prepared by dc reactive magnetron sputtering technique. The enhancement was observed by the narrowing of fluorescence linewidth as well as by increasing the fluorescence intensity. These parameters were compared to those of the dye only and the dye solution
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreThis work was conducted to study the treatment of industrial waste water, and more particularly those in the General Company of Electrical Industries.This waste water, has zinc ion with maximum concentration in solution of 90 ppm.
The reuse of such effluent can be made possible via appropriate treatments, such as chemical coagulation, Na2S is used as coagulant.
The parameters that influenced the waste water treatment are: temperature, pH, dose of coagulant and settling time.
It was found that the best condition for zinc removal, within the range of operation used ,were a temperature of 20C a pH value of 13 , a coagulant dose of 15 g Na2S /400ml solution and a settling time of 7 days. Under these conditions the zinc concentrat
Humanity is confronted with a growing array of environmental challenges that demand immediate attention and cannot be disregarded. One of the issues the world faces is air pollution, which presents a significant risk to both the environment and human well-being. The capitalist system has a great impact on the exacerbation of air pollution and environmental deterioration. This impact is reflected in Caryl Churchill’s post-apocalyptic play Not Not Not Not Not Enough Oxygen (1971). The play presents a futuristic scenario in which humanity faces grave consequences due to the polluting practices of capitalism and the unsustainable exploitation of natural resources. It depicts a future in which environmental degradation drives people
... Show MoreIn Iraq, water shortages and drought, especially during the hot summer months, necessitates that municipal authorities adopt water reuse projects like reusing treated domestic wastewater for crop irrigation. This work gives the conceptual and basic design elements for the necessary steps of filtration, UV irradiation and chlorination to make such a wastewater fit for agricultural use. A typical rural community of 50,000 people is considered as an example case for which functionality and relative simplicity of the proposed designs are prime factors. The objectives are 1) to show what is required and 2) that the presented information may be utilized to embark on the following phases of detailed design and execution of such projects.
The research seeks to study the subject (Media separation: the Relationship of Arab Immigrants with the Media of the Countries of Diaspora/ Sweden as a model). Where this phenomenon, "problem" has not been subjected to an in-depth study to find out the causes of this media separation and its repercussions on the immigrant, whether in the problem of integration, or his opportunity to work, or adapt to live in the new society.
Separation is a kind of word that is rarely used in Arabic media studies, relevant, sometimes, to the meaning of “refraining from watching TV or listening to the radio or reading newspapers”. Sometimes, it means “not tuning to or using any form of media like radios or newspapers to be updated about what
... Show MoreThe effluent quality improvement being discharged from wastewater treatment plants is essential to maintain an environment and healthy water resources. This study was carried out to evaluate the possibility of intermittent slow sand filtration as a promising tertiary treatment method for the sequencing batch reactor (SBR) effluent. Laboratory scale slow sand filter (SSF) of 1.5 UC and 0.1 m/h filtration rate, was used to study the process performance. It was found that SSF IS very efficient in oxidizing organic matter with COD removal efficiency up to 95%, also it is capable of removing considerable amounts of phosphate with 76% and turbidity with 87% removal efficiencies. Slow sand filter efficiently reduced the mass of suspended
... Show MoreThe research aims to use a new technology for industrial water concentrating that contains poisonous metals and recovery quantities from pure water. Therefore, the technology investigated is the forward osmosis process (FO). It is a new process that use membranes available commercial and this process distinguishes by its low cost compared to other process. Sodium chloride (NaCl) was used as draw solution to extract water from poisonous metals solution. The driving force in the FO process is provided by a different in osmotic pressure (concentration) across the membrane between the draw and poisonous metals solution sides. Experimental work was divided into three parts. The first part includes operating the forward osmosis process using T
... Show MoreThe 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of ads
... Show More