The aim of this work is to detect the best operating conditions that effect on the removal of Cu2+, Zn2+, and Ni2+ ions from aqueous solution using date pits in the batch adsorption experiments. The results have shown that the Al-zahdi Iraqi date pits demonstrated more efficient at certain values of operating conditions of adsorbent doses of 0.12 g/ml of aqueous solution, adsorption time 72 h, pH solution 5.5 ±0.2, shaking speed 300 rpm, and smallest adsorbent particle size needed for removal of metals. At the same time the particle size of date pits has a little effect on the adsorption at low initial concentration of heavy metals. The adsorption of metals increases with increasing the initial of metal concentration while above the 85 ppm, the removal efficiency was decreased. The phenomenon of adsorption of heavy metals on to Al-Zahdi Iraqi Date pits is exothermic process. The maximum adsorption capacity according to the Langmuir equation was 0.21, 0.149, and 0.132 mmol/g for Cu2+, Zn2+, and Ni2+ respectively. The adsorption equilibrium was well described by the Freundlich model. The results of Freundlich constants indicated that the adsorption capacity and adsorption intensity of Copper is larger than the Zinc and Nickel. The intraparticle diffusion was involved is this process but it is not the controlling step. The results of this study may inspire to find the optimal operating conditions for adsorption and develop that with large-scale production to clean the polluted water with heavy metals.
Granulation Technique for Gamma Alumina Catalyst Support was employed in inclined disk granulator (IDG), rotary drum granulator (RD) and extrusion – spheronization equipments .Product with wide size range can be produced with only few parameters like rpm of equipment, ratio of binder and angle of inclination. The investigation was conducted for determination the optimum operating conditions in the three above different granulation equipments.
Results reveal that the optimum operating conditions to get maximum granulation occurred at ( speed: 31rpm , Inclination:420 , binder ratio:225,300% ) for the IDG,( speed: 68rpm , Inclination: 12.50 , binder ratio: 300% ) for the RD and ( speed:1200rpm , time of rotation: 1-2min )for the Caleva
The Tigris River is a major source of Iraq’s drinking and agricultural water supply. An increase in pollution by heavy metals can be a great threat to human and aquatic life. In this study, the pollution index (PI) and metal index (MI) were used to evaluate the status of the Tigris River in Baghdad City. Five stations were chosen to conduct the study. Five heavy metals were analyzed: iron (Fe), lead (Pb), nickel (Ni), zinc (Zn), and chromium (Cr). The result of PI was ranked between “No effect to moderately affected for Fe; Slightly Affected to Seriously Affected for Pb; no effect to moderately affected for Ni, and no effect to strongly affected for Cr; only Zn was in the No effec

This work focused on anthropogenic influences of the trace metals distribution in the soils of Kirkuk city. Sequential extraction technique was used to determine the distribution of the chemical fractions of Ag, Cd, Co, Cu, Ni, Pb, Zn, As, Cr and V in soil of Kirkuk city. This area is affected mainly by burning oil trash. Results show that these heavy metals were primarily restricted to surface horizons and mostly associated with the residual fraction (28.8 – 50%). The remnant fractions (13.8 – 33.1%) linked to the organic matter, 7.9 – 27.2% was bound to Fe-Mn oxide, 0.7 – 27.9 was bound to carbonate. Only a small amount of the total metals in the soil is exchangeable (0.5 – 4.2%) and water soluble (0 – 4.1%) fractions.
... Show MoreThere are many aims of this book: The first aim is to develop a model equation that describes the spread of contamination through soils which can be used to determine the rate of environmental contamination by estimate the concentration of heavy metals (HMs) in soil. The developed model equation can be considered as a good representation for a problem of environmental contamination. The second aim of this work is to design two feed forward neural networks (FFNN) as an alternative accurate technique to determine the rate of environmental contamination which can be used to solve the model equation. The first network is to simulate the soil parameters which can be used as input data in the second suggested network, while the second network sim
... Show MoreActivated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.
The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased with adsorbent mass increasing. The maximum removal value of sulfate at different pH experiments is (43%) at pH=7.
The Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current dens
... Show MoreViscosities (η) and densities (ρ) of atenolol and propranolol hydrochloride in water and in concentrations (0.05 M) and (0.1 M) aqueous solution of threonine have been used to reform different important thermodynamic parameters like apparent molal volumes fv partial molal volumes at infinite dilution fvo , transfer volume fvo (tr), the slop Sv , Gibbs free energy of activation for viscous flow of solution ΔG*1,2 and the B-coefficient have been calculated using Jones-Dole equation. These thermodynamic parameters have been predicted in terms of solute-solute and solute-solvent interaction.
Polymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications.
Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different pro
... Show More