Porosity plays an essential role in petroleum engineering. It controls fluid storage in aquifers, connectivity of the pore structure control fluid flow through reservoir formations. To quantify the relationships between porosity, storage, transport and rock properties, however, the pore structure must be measured and quantitatively described. Porosity estimation of digital image utilizing image processing essential for the reservoir rock analysis since the sample 2D porosity briefly described. The regular procedure utilizes the binarization process, which uses the pixel value threshold to convert the color and grayscale images to binary images. The idea is to accommodate the blue regions entirely with pores and transform it to white in resulting binary image. This paper presents the possibilities of using image processing for determining digital 2D rock samples porosity in carbonate reservoir rocks. MATLAB code created which automatically segment and determine the digital rock porosity, based on the OTSU's thresholding algorithm. In this work, twenty-two samples of 2D thin section petrographic image reservoir rocks of one Iraqi oil field are studied. The examples of thin section images are processed and digitized, utilizing MATLAB programming. In the present study, we have focused on determining of micro and macroporosity of the digital image. Also, some pore void characteristics, such as area and perimeter, were calculated. Digital 2D image analysis results are compared to laboratory core investigation results to determine the strength and restrictions of the digital image interpretation techniques. Thin microscopic image porosity determined using OTSU technique showed a moderate match with core porosity.
Sediment samples were collected from main water processing and supply plants in Baghdad, and tested for radioactivity from both natural and artificial sources. These stations are: East Dijla (Tigris), Al-Kadisia, Al-Karama, Al-Rasheed, Al-Sader, Al-Wathba, and Al-Wihda supply stations. Qualitative measurements were made, and the results showed that most sediments exhibited natural radioactive level and sometimes less than the international regular standards. Specially, K-40 and Ra-226 results were much less than the standards for radioactive concentrations. Ac-228 concentration was found rather than Th-232 (in Al-Sader and Al-Wihda samples) but with low concentrations of about 10-15 Bg/kg and detection confidence ~45% , and Ce-141 and Be
... Show MoreThe buildup factor of cylindrical samples (shields) for Brass, Copper & lead (Brass, Cu, Pb (was studied, where buildup factor were calculated with thickness between (0-12) m.f.p. for Co60 and Cs137sources with activities (30) & (41) MBq respectively , using scintillation detector NaI(T?) with (3"×3")volume .The results shows increases of buildup factor for low atomic number(Z) samples where the energy of radiation source was constant, also shows increases of buildup factor with decreases the energy of radiation source. An empirical equation was obtained using Matlab7 program this equation have agreements with most obtained data for 96%.
In this study, the amounts of activity concentrations of naturally occurring in 10 soil samples of the Tigris river and surrounding areas collected from deferent city of Baghdad have been investigated. Tigris river is an important water source for irrigation and drinking in Iraq. This study was done during 2018 in Protection Center of the Iraqi Ministry of Health and Environment using a high purity germanium detector. The resolution of (HPGe) at 2keV and 30% efficiency. The results of soil sample obtained showed that the effective activity concentration of 40K are ranged from 181.4 Bq/kg in sample S6 to 286.4 Bq/kg in S7. For Raeq values are ranged from 6 Bq/m3 in sample S5 to 17 Bq/m3 in sample S3. The obtained data revealed that the me
... Show Morehas experienced a step-change since the inception of ambient mass spectrometry removed the requirement for samples to be investigated under vacuum conditions. Approaches based on surface– plasma interactions are especially promising, including PADI. Whilst the mechanisms involved in generating PADI spectra still need to be unravelled, PADI shows significant promise to become a valuable and versatile tool in the instrumental arsenal available to the surface analyst
For the most reliable and reproducible results for calibration or general testing purposes of two immiscible liquids, such as water in engine oil, good emulsification is vital. This study explores the impact of emulsion quality on the Fourier transform infrared (FT-IR) spectroscopy calibration standards for measuring water contamination in used or in-service engine oil, in an attempt to strengthen the specific guidelines of ASTM International standards for sample preparation. By using different emulsification techniques and readily available laboratory equipment, this work is an attempt to establish the ideal sample preparation technique for reliability, repeatability, and reproducibility for FT-IR analysis while still considering t
... Show MoreIn this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between
... Show More