Bio-diesel is an attractive fuel fordiesel engines. The feedstock for bio-diesel production is usually vegetable oil, waste cooking oil, or animal fats. This work provides an overview concerning bio-diesel production. Also, this work focuses on the commercial production of biodiesel. The objective is to study the influence of these parameters on the yield of produced. The biodiesel production affecting by many parameters such s alcohol ratio (5%, 10%,15 %, 20%,25%,30%35% vol.), catalyst loading (5,10,15,20,25) g,temperature (45,50,55,60,65,70,75)°C,reaction time (0-6) h, mixing rate (400-1000) rpm. the maximum bio-diesel production yield (95%) was obtained using 20% methanol ratio and 15g biocatalyst at 60°C.
Pyrolysis of high density polyethylene (HDPE) was carried out in a 750 cm3 stainless steel autoclave reactor, with temperature ranging from 470 to 495° C and reaction times up to 90 minute. The influence of the operating conditions on the component yields was studied. It was found that the optimum cracking condition for HDPE that maximized the oil yield to 70 wt. % was 480°C and 20 minutes. The results show that for higher cracking temperature, and longer reaction times there was higher production of gas and coke. Furthermore, higher temperature increases the aromatics and produce lighter oil with lower viscosity.
Baker's Yeast is an important additive among the substances, which improves bred quality, thus, a consideration has been made to study the conditions and parameters that affecting the production of the yeast in a batch fermenter experimentally and theoretically. Experimental runs were implemented in a 12-liter pilot-scale fermenter to predict the rate of growth and other parameters such as amount of additive consumed and the amount of heat generated. The process is modeled and performed using a computer programming prepped for this purpose, the model gave a good agreement comparing to the experimental work specially in the log phase.
Use of computer simulation to quantify the effectiveness of blowing agents can be an effective tool for optimizing formulations and for the adopting of new blowing agents. This paper focuses on a mass balance on blowing agent during foaming including the quantification of the amount that stays in the resin, the amount that ends up in the foam cells, and the pressure of the blowing agent in the foam cells. Experimental data is presented both in the sense of developing the simulation capabilities and the validating of simulation results.
This article will address autoclave design considerations and
manufacturing working with high pressure low temperature
supercritical drying technique to produce silica aerogel. The design
elects carbon dioxide as a supercritical fluid (31.7 oC and 72.3 bar).
Both temperature and pressure have independently controlling
facility through present design. The autoclave was light weight (4.5
kg) and factory-made from stainless steel. It contains a high pressure
window for monitoring both transfer carbon dioxide gas to liquid
carbon dioxide and watching supercritical drying via aerogel
preparation process. In this work aerogel samples were prepared and
the true apparent densities, total pore volume and pore size
This study investigates the digestion of cow dung (CD) for biogas production at laboratory scales. The study was carried out through anaerobic fermentation using cow dung as substrate. The digester was operated at ambient temperatures of 39.5 °C for a period of 10 days. The effect of iron powder in controlling the production of hydrogen sulfide (H2S) has been tested. The optimum concentration of iron powder was 4g/L with the highest biogas production. A Q – swatch Nd:YAG laser has been used to mix and homogenize the components of one of the six digesters and accelerate digestion. At the end of digestion, all digestions effluent was subjected to 5 laser pulses with 250mJ/pules to dispose waste biomass.
One of the costliest problems facing the production of hydrocarbons in unconsolidated sandstone reservoirs is the production of sand once hydrocarbon production starts. The sanding start prediction model is very important to decide on sand control in the future, including whether or when sand control should be used. This research developed an easy-to-use Computer program to determine the beginning of sanding sites in the driven area. The model is based on estimating the critical pressure drop that occurs when sand is onset to produced. The outcomes have been drawn as a function of the free sand production with the critical flow rates for reservoir pressure decline. The results show that the pressure drawdown required to
... Show MoreSports and legend rooted deep in human history, and although they meet in the oldest epics as was the hero Gilgamesh legend and a hero of the heroes of wrestling has been named the oldest regular sports tournament in history in his name, a Algeljamchih Games which will be held events in Mesopotamia in August of each year and will continue nine days and take place in competitions in more than a sports game ..
In our time re-production of sports legends to serve the objectives of the huge investment both sports on the commercialization level or at other levels of marketing, including political marketing.
In this context, a move sports media for the production of myths we studied Semiaiaa in an effort to learn how the production proce
Refuse derived fuel (RDF) is considered one of the most important types of low cost thermal energy which can be tapped in the industry, especially the cement industry in particular being the need of high thermal energy during the production processes, and in this paper we have implemented the use of a derivative of the fuel RDF as a substitute for gasoline , to reduce production costs and thereby achieve production efficiency, and the methodology used in this research statistical analysis as well as the use of the cost of kaizen target for the purpose of reducing costs and achieve production efficiency, and this has reduced the cost total cement production by which led to reduce total costs of cement production by 8.4% and an incre
... Show MoreEconomic units can benefit from the cleaner production strategy, which aims to reduce the environmental impact of economic activities while improving efficiency and profitability. Accordingly, the aim of the research was to clarify the knowledge foundations of cleaner production costs and to indicate their role in reducing the costs of poor quality (the costs of failure). A set of conclusions has been reached, the most important of which is that cleaner production has achieved a reduction in the costs of external failure, represented by the costs of guarantee, by an amount of 12,339,000 dinars. Contributes to reducing the costs of failure, and based on the conclusions, a set of recommendations were presented, the most important of w
... Show More
