Titanium-dioxide (TiO2) nanoparticles suspended in water, and ethanol based fluids have been prepared using one step method and characterized by scanning electron microscopy (SEM), and UV–visible spectrophotometer. The TiO2 nanoparticles were added to base fluids with different volume concentrations from 0.1% to1.5% by dispersing the synthesized nanoparticles in deionized water and ethanol solutions. The effective thermal conductivity, viscosity and pH of prepared nanofluids at different temperatures from 15 to 30 oC were carried out and investigated. It was observed that the thermal conductivity, pH, and viscosity of nanofluids increases with the increase in TiO2 nanoparticle volume fraction. The thermal conductivity of TiO2 nanofluids significantly increases linearly with increasing particle vol. fraction at different temperature values and also it was found that the viscosity increases with increasing particle vol. fraction and decreases with the increase in temperature.
The effects of BaCl2 dopant on the optical properties of poly (vinyl alcohol) have been investigated. Pure and BaCl2 doped PVA films were prepared using solvent casting method. These films were characterized using UV/VIS technique in order to estimate the kind of transition which was found to be indirect transition. The value of the optical energy gap was decrease with increasing dopant concentration.
Refractive index, extinction coefficient and Urbach tail have been also investigated; it was found that all the above parameters affects by doping.
The dental amalgam of radioactive materials in the restoration of teeth because of its readily adaptable to existing materials in the oral cavity in addition to mechanical properties such as hardness mechanical resistance Alndgat and others in this study were prepared Almlagm used Guy dental restoration of silver alloy tin plus some elements to improve the characteristicsmechanical such as copper, zinc or indium in addition to mercury
N-type Tin dioxide thin films with thickness (350 nm) prepared by thermal evaporation method. The thin film SnO2 was doped with Ag by the rate (0.01, 0.02 and 0.03). Atomic Force Microscopic (AFM) was adopted to determine the grain size and roughness of the film surface. The electrical properties were determined by mean of Hall Measurement system and mobility was calculated. SnO2: Ag/P–Si photodetectors demonstration the highest described visible responsivity of (0.287 A/W) with the Ag ratio of (0.03). I–V characteristics with different power density were measured. The best sensitive value of the spectral response, specific detectivity and quantum efficiency at wavelength (422 nm).
The aim of this research is to study the surface alteration characteristics and surface morphology of the superhydrophobic/hydrophobic nanocomposite coatings prepared by an electrospinning method to coat various materials such as glass and metal. This is considered as a low cost method of fabrication for polymer solutions of Polystyrene (PS), Polymethylmethacrylate (PMMA) and Silicone Rubber (RTV). Si were prepared in various wt% of composition for each solutions. Contact angle measurement, surface tension, viscosity, roughness tests were calculated for all specimens. SEM showed the morphology of the surfaces after coated. PS and PMMA showed superhydrophobic properties for metal substrate, while Si showed hydroph
... Show MoreIn this work, the superconducting CuBa2LaCa2Cu4O11+δ compound was prepared by citrate precursor method and the electrical and structural properties were studied. The electrical resistivity has been measured using four probe test to find the critical temperature Tc(offset) and Tc(onset). It was found that Tc (offset) at zero resistivity has 101 K and Tc (onset) has 116 K. The X-ray diffraction (XRD) analysis exhibited that a prepared compound has a tetragonal structure. The crystal size and microscopic strain due to lattice deformation of CuBa2LaCa2Cu4O11+δ were estimated by four methods, namely Scherer(S), Halder-Wagner(H-W), size-strain plot (SSP) and Williamson-Hall, (W-H) methods. Results of crystal sizes obtained by these meth
... Show MorePolyimide/MWCNTs nanocomposites have been fabricated by solution mixing process. In the present study, we have investigated electrical conductivity and dielectric properties of PI/MWCNT nanocomposites in frequency range of 1 kHz to 100 kHz at different MWCNTs concentrations from 0 wt.% to 15 wt.%. It has been observed that the electrical conductivity and dielectric constants are enhanced significantly by several orders of magnitude up to 15 wt.% of MWCNTs content. The electrical conductivity increases as the frequency is increased, which can be attributed to high dislocation density near the interface. The rapid increase in the dielectric constant at a high MWCNTs content can be explained by the form
The Invar effect in 3D transition metal such as Ni and Mn, were prepared on a series composition of binary Ni1-xMnx system with x=0.3, 0.5, 0.8 by using powder metallurgy technique. In this work, the characterization of structural and thermal properties have been investigated experimentally by X-ray diffraction, thermal expansion coefficient and vibrating sample magnetometer (VSM) techniques. The results show that anonymously negative thermal expansion coefficient are changeable in the structure. The results were explained due to the instability relation between magnetic spins with lattice distortion on some of ferromagnetic metals.
This study discussed the effects of doping with silver (Ag) on the optical and structural properties of
CdO nanoparticles at different concentrations 0, 1, 2, 3, 4, 5 wt% prepared by the precipitation method. The
materials were annealed at 550˚C for 1 h. The structural, topographical, and optical properties were
diagnosed by X-ray diffraction analysis, atomic force instrument, and visible and ultraviolet spectrometers.
The results show that the average diameter of the grains depends on the percentage of added silver to the
material, as the diameter decreased from 88.8 to 59.7 nm, and it was found that the roughness increased from
5.56 to 26.5. When studying the optical properties, it was noted that th
Angiogenesis is important for tissue during normal physiological processes as well as in a number of diseases, including cancer. Drug resistance is one of the largest difficulties to antiangiogenesis therapy. Due to their lower cytotoxicity and stronger pharmacological advantage, phytochemical anticancer medications have a number of advantages over chemical chemotherapeutic drugs. In the current study, the effectiveness of AuNPs, AuNPs-GAL, and free galangin as an antiangiogenesis agent was evaluated. Different physicochemical and molecular approaches have been used including the characterization, cytotoxicity, scratch wound healing assay, and gene expression of VEGF and ERKI in MCF-7 and MDA-MB-231 human breast cancer cell line. Re
... Show MoreA new hetrocyclic liquid crystal compounds containing 1,3,4-oxadiazole with different substituted in para position (Bromo, Chloro, Nitro and Methyl) were synthesized and characterized by melting points, FTIR Spectroscopy and 1HNMR spectroscopy for [Cl-SR6] and [NO2-SR6] compounds. The liquid crystalline properties of the synthesized compounds were studied by using hot-stage polarizing optical microscopy (POM), so they determined the transition enthalpies and entropies by using differential scanning calorimetery (DSC). All of the compounds show mesomorphic properties. The compounds [Br-SR6], [Cl-SR6] and [NO2SR6] exhibit an enantiotropic dimorphism smectic (Sm) phase, while the compounds [MeSR6] showed nematic (N) phase throw cooli
... Show More