Preferred Language
Articles
/
ijcpe-765
Removal of Tetracycline from Wastewater Using Circulating Fluidized Bed
...Show More Authors

   In this study, the circulating fluidized bed was used to remove the Tetracycline from wastewater utilizing a pistachio shell coated with ZnO nanoparticles. Several parameters including, Tetracycline solution flowrate, initial static bed height, Tetracycline initial concentration and airflow rate were systematically examined to show their effect on the breakthrough curve and the required time to reach the adsorption capacity and thus draw the fully saturated curve of the adsorbent. Results showed that using ZnO nanoparticles will increase the adsorbent surface area and pores and as a result the adsorption increased, also the required time for adsorbent saturation increased and thus the removal efficiency may be achieved at minimum antibiotic flowrate, maximum bed height, higher antibiotic concentration, and higher airflow rate. Also, a minimum fluidization velocity correlation was developed in this study. This correlation was found to be a function of liquid velocity, bed height, particle size, and particle density. The results showed that circulating fluidized bed has a better performance and last more than two hours before the bed biomass exhausted in comparison with traditional fluidized bed.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Flotation of Chromium Ions from Simulated Wastewater Using Air Microbubbles
...Show More Authors

   A microbubble air flotation technique was used to remove chromium ions from simulated wastewater (e.g. water used for electroplating, textiles, paints and pigments, and tanning leather). Experimental parameters were investigated to analyze the flotation process and determine the removal efficiency. These parameters included the location of the sampling port from the bottom of the column, where the diffuser is located to the top of flotation column (30, 60, and 90 cm), the type of surfactant (anionic, SDS, or cationic, CTAB) and its concentration (5, 10, 15, and 20 mg/L), the pH of the initial solution (3, 5, 7, 9, and 11), the initial contaminant concentration (10, 20, 30, and 40 mg/L), the gas flow rate (0.1, 0.2, 0.3, and 0.5 L/mi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Ibuprofen Degradation from Synthetic Wastewater Using Photo-Fenton Process
...Show More Authors

   The removal of Ibuprofen antibiotics (IBU) by photo-degradation UV/H2O2/Fe+2 system was investigated in a batch reactor under different initial concentrations of H2O2 (100-500) mg/L, Fe+2 (10-40) mg/L, pH (3-9) and initial concentrations of IBU (10-80) mg/L, and their relationship with the degradation efficiency were studied. The result demonstrated that the maximum elimination of IBU was 85.54% achieved at 300 mg/L of H2O2, 30 mg/L of Fe+2, pH=3, and irradiation time of 150 min, for 10 mg/L of IBU. The results have shown that the oxidation reagent H2O2 plays a very important role in IBU degradation.

View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Desalination And Water Treatment
Wastewater remediation using activated carbon derived from Alhagi plant
...Show More Authors

This work focuses on the use of biologically produced activated carbon for improving the physi-co-chemical properties of water samples obtained from the Tigris River. An eco-friendly and low-cost activated carbon was prepared from the Alhagi plant using potassium hydroxide (KOH) as an impregnation agent. The prepared activated carbon was characterised using Fourier-transform infrared spectroscopy to determine the functional groups that exist on the raw material (Alhagi plant) and Alhagi activated carbon (AAC). Scanning electron microscope–energy-dispersive X-ray spectroscope was also used to investigate the surface shape and the elements that compose the powder. Brunauer–Emmett–Teller surface area analysis was used to evaluate the spe

... Show More
View Publication
Scopus (7)
Scopus
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
Removal of Copper from Simulated Wastewater by Applying Electromagnetic Adsorption for Locally Prepared Activated Carbon of Banana Peels
...Show More Authors

The adsorption of copper ions onto produced activated carbon from banana peels (with particle size 250 µm) in a single component system with applying magnetic field has been studied using fixed bed adsorber. The fixed bed breakthrough curves for the copper ions were investigated. The adsorption capacity for Cu (II) was investigated. It was found that 1) the exposure distance (E.D) and strength of magnetic field (B), affected the degree of adsorption; and 2) experiments showed that removal of Cu ions and accumulative adsorption capacity of adsorbent increase as the exposure distance and strength of magnetic field increase.
 

View Publication Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal Of Dissolved Cadmium Ions from Contaminated Wastewater using Raw Scrap Zero-Valent Iron And Zero Valent Aluminum as Locally Available and Inexpensive Sorbent Wastes
...Show More Authors

The current study was to examine the reliability and effectiveness of using most abundant, inexpensive waste in the form of scrap raw zero valent aluminum ZVAI and zero valent iron ZVI for the capture, retard, and removal of one of the most serious and hazardous heavy metals cadmium dissolved in water. Batch tests were conducted to examine contact time (0-250) min, sorbent dose (0.25-1 g ZVAI/100 mL and 2-8 g ZVI/100 mL), initial pH (3-6), pollutant concentration of 50mg/L initially, and speed of agitation (0-250) rpm . Maximum contaminant removal efficiency corresponding to (90 %) for cadmium at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed wer

... Show More
View Publication Preview PDF
Crossref (12)
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Environmental Processes
Removal of Dyes from Aqueous Solutions using Non-Thermal Plasma
...Show More Authors

View Publication
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Dec 12 2018
Journal Name
Iop Conference Series: Materials Science And Engineering
The performance of MnO<sub>2</sub>/graphite electrode for TOC removal from wastewater by indirect electrochemical oxidation process
...Show More Authors

Electrochemical oxidation in the presence of sodium chloride used for removal of phenol and any other organic by products formed during the electrolysis by using MnO2/graphite electrode. The performance of the electrode was evaluated in terms fraction of phenol and the formed organic by products removed during the electrolysis process. The results showed that the electrochemical oxidation process was very effective in the removal of phenol and the other organics, where the removal percentage of phenol was 97.33%, and the final value of TOC was 6.985 ppm after 4 hours and by using a speed of rotation of the MnO2 electrode equal to 200 rpm.

View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Sep 04 2016
Journal Name
Baghdad Science Journal
Bioadsorption of Heavy Metals From Industrial Wastewater Using Some Species of Bacteria
...Show More Authors

Three isolated bacteria were examined to remove heavy metals from the industrial wastewater of the Diala State Company of Electrical Industries, Diyala-Iraq. The isolated bacteria were identified as Pseudomonas aeruginosa, Escherichia coli and Sulfate Reducing Bacteria (SRB). The three isolates were used as an adsorption factor for different concentrations of Lead and Copper (100, 150, and 200 ppm.), in order to examine the adsorption efficiency of these isolates. In addition, the effect of three factors on heavy metals adsorption were examined; temperature (25, 30, and 37 ?C), pH (3 and 4.5) and contact time (2 and 24 hrs). The results showed that the highest level of lead adsorption was obtained at 37 ?C by E. coli, P, aerugenosa and

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Ecological Engineering
Biosorption of Heavy Metals from Synthetic Wastewater by Using Macro Algae Collected from Iraqi Marshlands
...Show More Authors

View Publication
Scopus (17)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Journal Of Engineering
A Comparative Study of a Moving Bed Biofilm Reactor and Bio-shaft Technology for a Wastewater Treatment Process: A review
...Show More Authors

In addition to the primary treatment, biological treatment is used to reduce inorganic and organic components in the wastewater. The separation of biomass from treated wastewater is usually important to meet the effluent disposal requirements, so the MBBR system has been one of the most important modern technologies that use plastic tankers to transport biomass with wastewater, which works in pure biofilm, at low concentrations of suspended solids. However, biological treatment has been developed using the active sludge mixing process with MBBR. Turbo4bio was established as a sustainable and cost-effective solution for wastewater treatment plants in the early 1990s and ran on minimal sludge, and is easy to maintain. This

... Show More
View Publication Preview PDF
Crossref