Preferred Language
Articles
/
ijcpe-731
Removal of-Copper Ions-from Aqueous Solution Using Liquid-Surfactant-Membrane Technique
...Show More Authors

Extraction of copper (Cu) from aqueous solution utilizing Liquid Membrane technology (LM) is more effective than precipitation method that forms sludge and must be disposed of in landfills. In this work, we have formulated a liquid surfactant membrane (LSM) that uses kerosene oil as the main diluent of LSM to remove copper ions from the aqueous waste solution through di- (2-ethylhexyl) phosphoric acid - D2EHPA- as a carrier. This technique displays several advantages including one-stage extraction and stripping process, simple operation, low energy requirement, and. In this study, the LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM process, various parameters have been studied such as carrier concentration; treat ratio (TR), agitating speed and initial feed concentration. After finding the optimum parameters, it was possible to extract Cu up to 95% from the aqueous feed phase in a single stage extraction.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Colloid And Interface Science
Removal of monoethylene glycol from wastewater by using Zr-metal organic frameworks
...Show More Authors

View Publication
Scopus (40)
Crossref (43)
Scopus Clarivate Crossref
Publication Date
Tue Mar 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Reduction of Sulfur Compounds from Petroleum Fraction Using Oxidation-Adsorption Technique
...Show More Authors

Oxidation of sulfur compounds in fuel followed by an adsorption process were studied using two modes of operation, batch mode and continuous mode (fixed bed). In batch experiment oxidation process of kerosene with sulfur content 2360 ppm was achieved to study the effect of amount of hydrogen peroxide(2.5, 4, 6 and 10) ml at different temperature(40, 60 and 70)°C. Also the effect of amount acetic acid was studied  at the optimal conditions of the oxidation step(4ml H2O2 and 60 °C).Besides, the role of acetic acid different temperatures(40, 60, 70) °C and 4ml H2O2, effect of reaction time(5, 30, 60, 120, 300) minutes at temperatures(40,60) °C, 4ml H2O2 and 1 mlHAC)&

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Ecological Engineering
Heavy Metals Removal from Simulated Wastewater using Horizontal Subsurface Constructed Wetland
...Show More Authors

This study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr

... Show More
Scopus (18)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
DYE REMOVAL FROM TEXTILE WASTEWATER BY COAGULATION USING ALUM AND PAC
...Show More Authors

Removal of solar brown and direct black dyes by coagulation with two aluminum based
coagulants was conducted. The main objective is to examine the efficiency of these
coagulants in the treatment of dye polluted water discharged from Al-Kadhymia Textile
Company (Baghdad-Iraq). The performance of these coagulants was investigated through
jar test by comparing dye percent removal at different wastewater pH, coagulant dose,
and initial dye concentration. Results show that alum works better than PAC under acidic
media (5-6) and PAC works better under basic media (7-8) in the removal of both solar
brown and direct black dyes. Higher doses of PAC were required to achieve the
maximum removal efficiency under optimum pH co

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Ecological Engineering
Heavy Metals Removal from Simulated Wastewater using Horizontal Subsurface Constructed Wetland
...Show More Authors

This study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr

... Show More
Crossref (17)
Crossref
Publication Date
Mon Apr 01 2024
Journal Name
South African Journal Of Chemical Engineering
Removal of COD from petroleum refinery wastewater by adsorption using activated carbon derived from avocado plant
...Show More Authors

View Publication
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Removal of Cu2+, Pb2+ , And Ni 2+ Ions From Simulated Waste Water By Ion Exchange Method On Zeolite And Purolite C105 Resin
...Show More Authors

The removal of heavy metal ions from wastewater by ion exchange resins ( zeolite and purolite C105), was investigated. The adsorption process, which is pH dependent, shows maximum removal of metal ions at pH 6 and 7 for zeolite and purolite C105 for initial metal ion
concentrations of 50-250 mg/l, with resin dose of 0.25-3 g. The maximum ion exchange capacity was found to be 9.74, 9.23 and 9.71 mg/g for Cu2+, Pb2+, and Ni2+ on zeolite respectively, while on purolite C105 the maximum ion exchange capacity was found to be 9.64 ,8.73 and 9.39 for Cu2+, Pb2+, and Ni2+ respectively. The maximum removal was 97-98% for Cu2+ and Ni2+ and 92- 93% for Pb2+ on zeolite, while it was 93-94% for Cu2+, 96-97% for Ni2+, and 87-88% for Pb2+ on puroli

... Show More
View Publication Preview PDF
Crossref (10)
Crossref
Publication Date
Sun Jun 04 2017
Journal Name
Baghdad Science Journal
Improvement of the technique for the solution method of Gauss Seidel
...Show More Authors

In this paper, a new approach was suggested to the method of Gauss Seidel through the controlling of equations installation before the beginning of the method in the traditional way. New structure of equations occur after the diagnosis of the variable that causes the fluctuation and the slow extract of the results, then eradicating this variable. This procedure leads to a higher accuracy and less number of steps than the old method. By using the this proposed method, there will be a possibility of solving many of divergent values equations which cannot be solved by the old style.

View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Plant Archives
The effect of adding some organic and mineral substances to calcareous soil on adsorption and desorption of copper and its removal efficiency from soil
...Show More Authors

Scopus (5)
Scopus
Publication Date
Thu Feb 01 2024
Journal Name
Heliyon
Removal of amoxicillin from contaminated water using modified bentonite as a reactive material
...Show More Authors

This study concerns the removal of a trihydrate antibiotic (Amoxicillin) from synthetically contaminated water by adsorption on modified bentonite. The bentonite was modified using hexadecyl trimethyl ammonium bromide (HTAB), which turned it from a hydrophilic to a hydrophobic material. The effects of different parameters were studied in batch experiments. These parameters were contact time, solution pH, agitation speed, initial concentration (C0) of the contaminant, and adsorbent dosage. Maximum removal of amoxicillin (93 %) was achieved at contact time = 240 min, pH = 10, agitation speed = 200 rpm, initial concentration = 30 ppm, and adsorbent dosage = 3 g bentonite per 1L of pollutant solution. The characterization of the adsorbent, modi

... Show More
View Publication
Scopus (22)
Crossref (25)
Scopus Clarivate Crossref