
This work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.
De-waxing of lubricating oil distillate (400-500 ºC) by using urea was investigated in the present study. Lubricating oil distillate produced by vacuum distillation and refined by furfural extraction was taken from Al-Daura refinery. This oil distillate has a pour point of 34 ºC. Two solvents were used to dilute the oil distillate, these are methyl isobutyl ketone and methylene chloride. The operating conditions of the urea adduct formation with n-paraffins in the presence of methyl isobutyl ketone were studied in details, these are solvent to oil volume ratio within the range of 0 to 2, mixer speed 0 to 2000 rpm, urea to wax weight ratio 0 to 6.3, time of adduction 0 to 71 min and temperature 30-70 ºC). Pour point of de-waxed oil and yi
... Show MoreThe removal of heavy metal ions from wastewater by sorptive flotation using Amberlite IR120 as a resin, and flotation column, was investigated. A combined two-stage process is proposed as an alternative of the heavy metals removal from aqueous solutions. The first stage is the sorption of heavy metals onto Amberlite IR120 followed by dispersed-air flotation. The sorption of metal ions on the resin, depending on contact time, pH, resin dosage, and initial metal concentration was studied in batch method .Various parameters such as pH, air flow rate, and surfactant concentration were investigated in the flotation stage. Sodium lauryl sulfate (SLS) and Hexadecyltrimethyl ammonium bromide (HTAB) were used as anionic and cationic surfactant re
... Show MoreThis work was conducted to study the oxidation of phenol in aqueous solution using copper based catalyst with zinc as promoter and different carrier, i.e. γ-Alumina and silica. These catalysts were prepared by impregnation method.
The effect of catalyst composition, pH (5.6-9), phenol to catalyst concentration ratio (2-0.5), air feed rate (30-50) ml/s, stirring speed (400-800) rpm, and temperature (80-100) °C were examined in order to find the best conditions for phenol conversion.
The best operating conditions which lead to maximum phenol conversion (73.1%) are : 7.5 pH, 4/6 phenol to catalyst concentration, 40 ml/s air feed rate, 600 rpm stirring speed, and 100 °C reaction temperature. The reaction involved an induction period
The present research has investigated the effect of microwave energy on improving the flow properties of heavy crude oil. The fragmentation of crude oil molecules was carried out with and without using 1 and 10 wt. % concentration of various types of H-donors like tetralin, cyclohexane, and naphtha. Microwave power of 320, 385, and 540 W and radiation time 1-9 min, and temperature were studied. The kinematic viscosity and asphaltene content were measured for evaluation the improving of heavy crude oil.
Results show that viscosity of crude oil decreased with increase H-donor concentration, a maximum percentage of viscosity reduction was10.63 % for tetralin at 6 min radiation time, while 8.67%, and 7.34% for cycl
... Show MoreThe depletion of petroleum reserves and increasing environmental concerns have driven the development of eco-friendly asphalt binders. This research investigates the performance of natural asphalt (NA) modified with waste engine oil (WEO) as a sustainable alternative to conventional petroleum asphalt (PA). The study examines NA modified with 10%, 20%, and 30% WEO by the weight of asphalt to identify an optimal blend ratio that enhances the binder’s flexibility and workability while maintaining high-temperature stability. Comprehensive testing was conducted, including penetration, softening point, viscosity, ductility, multiple stress creep recovery (MSCR), linear amplitude sweep (LAS), energy-dispersive X-ray spectroscopy (EDX), F
... Show MoreAbstract his study involved evaluation of side effects of two weight reduction pills that had been widely distributed in the last period. Two weight reduction compounds are studied, Reductil (containing chemical substances) and Chinese’s weight reduction herbs (containing natural substances). Two doses for each compound are used in this research; 5mg/ml and 0.5mg/ml for Reductil, while 30mg/ml and 10mg/ml for Chinese weight reduction herbs. To evaluate the toxic effects of these compounds, the following parameters were determined which include mitotic index (cytogenetic analysis), serum FSH and LH hormones level (follicles stimulation hormone/FSH and lutenising hormone/LH) and histological examination of female mice ovaries. Control group
... Show MoreThe integration of nanomaterials in asphalt modification has emerged as a promising approach to enhance the performance of asphalt pavements, particularly under high-temperature conditions. Nanomaterials, due to their unique properties such as high surface area, exceptional mechanical strength, and thermal stability, offer significant improvements in the rheological properties, durability, and resistance to deformation of asphalt binders. This research reviewed the application of various nanomaterials, including nano silica, nano alumina, nano titanium, nano zinc, and carbon nanotubes in asphalt modification. The incorporation of these nanomaterials into asphalt mixtures has shown potential to increase the stiffness and high-tempera
... Show More