Preferred Language
Articles
/
ijcpe-62
Spatial Data Analysis for Geostatistical Modeling of Petrophysical Properties for Mishrif Formaiton, Nasiriya Oil Field
...Show More Authors

Spatial data analysis is performed in order to remove the skewness, a measure of the asymmetry of the probablitiy distribution. It also improve the normality, a key concept of statistics from the concept of normal distribution “bell shape”, of the properties like improving the normality porosity, permeability and saturation which can be are visualized by using histograms. Three steps of spatial analysis are involved here; exploratory data analysis, variogram analysis and finally distributing the properties by using geostatistical algorithms for the properties. Mishrif Formation (unit MB1) in Nasiriya Oil Field was chosen to analyze and model the data for the first eight wells. The field is an anticline structure with northwest- southeast general trend. Mishrif Formation is the important middle cretaceous carbonate formation in the stratigraphic column of southern Iraq. The result of applying spatial data analysis showed the nature and quantitative summary of data and so it would be easy to remove the skewness and improve the normality of the petrophysical properties for suitable distribution by the algorithms. It also showed that unit MB1 in Mishrif Fromation contains good properties in which high porosity (0.182) and permeability (7.36 md) with low values of water saturation (0.285) that make it suitable for the accumulation of oil.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 29 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Kinetics and Thermodynamics of Peppermint Oil Extraction from Peppermint Leaves
...Show More Authors

This study aimed to extraction of essential oil from peppermint leaves by using hydro distillation methods. In the peppermint oil extraction with hydro distillation method is studied the effect of the extraction temperature to the yield of peppermint oil. Besides it also studied the kinetics during the extraction process. Then, 2nd -order mechanism was adopted in the model of hydro distillation for estimation many parameters such as the initial extraction rate, capacity of extraction and the constant rat of extraction with various temperature. The same model was also used to estimate the activation energy. The results showed a spontaneous process, since the  Gibbs free energy had a value negative sign.

View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Influence of Nanofluid Flooding on Oil Displacement in Porous Media
...Show More Authors

Hydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil at dif

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Upgrading of Sharqy Baghdad Heavy Oil via N-Hexane Solvent
...Show More Authors

   Asphaltenes are a solubility class described as a component of crude oil with undesired characteristics. In this study, Sharqy Baghdad heavy oil upgrading was achieved utilizing the solvent deasphalting approach as asphaltenes are insoluble in paraffinic solvents; they may be removed from heavy crude oil by adding N-Hexane as a solvent to create deasphalted oil (DAO)of higher quality. This method is known as Solvent De-asphalting (SDA). Different effects have been assessed for the SDA process, such as solvent to oil ratio (4-16/1 ml/g), the extraction temperature (23 ºC) room temperature and (68 ºC) reflux temperature at (0.5 h mixing time with 400 rpm mixing speed). The best solvent deasphalting results were obtained at room temp

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Mar 01 2007
Journal Name
Journal Of Engineering
DEWAXING OF DISTILLATE OIL FRACTION (400- 500 ºC) USING UREA
...Show More Authors

De-waxing of lubricating oil distillate (400-500 ºC) by using urea was investigated in the present study. Lubricating oil distillate produced by vacuum distillation and refined by furfural extraction was taken from Al-Daura refinery. This oil distillate has a pour point of 34 ºC. Two solvents were used to dilute the oil distillate, these are methyl isobutyl ketone and methylene chloride. The operating conditions of the urea adduct formation with n-paraffins in the presence of methyl isobutyl ketone were studied in details, these are solvent to oil volume ratio within the range of 0 to 2, mixer speed 0 to 2000 rpm, urea to wax weight ratio 0 to 6.3, time of adduction 0 to 71 min and temperature 30-70 ºC). Pour point of de-waxed oil and yi

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 22 2026
Journal Name
Journal Of Engineering
Application of Mathematical Drilling Model on Southern Iraqi Oil Fields
...Show More Authors

View Publication
Publication Date
Sun Jun 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Extraction of Oil from Eucalyptus Camadulensis Using Water Distillation Method
...Show More Authors

This work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.

View Publication Preview PDF
Publication Date
Sat Mar 01 1997
Journal Name
Polymer-plastics Technology And Engineering
Feasibility of Dynamic Acid Corrosion Control in Oil Well Tubing
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Influence of Nanofluid Flooding on Oil Displacement in Porous Media
...Show More Authors

Hydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Fuel
Wettability of nanofluid-modified oil-wet calcite at reservoir conditions
...Show More Authors

Nanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application to more efficient carbon storage. We present a series of contact angle (θ) investigations on initially oil-wet calcite surfaces to quantify the performance of hydrophilic silica nanoparticles for wettability alteration. These tests are conducted at typical in-situ high pressure (CO2), temperature and salinity conditions. A high pressure–temperature (P/T) optical cell with a regulated tilted surface was used to measure the advancing and receding contact angles at the desired conditions. The results showed that silica nanofluids can alte

... Show More
Scopus (143)
Crossref (137)
Scopus Clarivate Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Physics Of Fluids
Modeling the effects of slip on dipole–wall collision problems using a lattice Boltzmann equation method
...Show More Authors

We study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence,

... Show More
View Publication
Scopus (14)
Crossref (13)
Scopus Clarivate Crossref