The surplus glycerol produced from biodiesel production process as a by-product with high quantity can be considered as a good source to prepare glycerol carbonate (GC) whereas with each 1000 kg from biodiesel obtains 100 kg from glycerol. Glycerol converted to glycerol carbonate over bio-char as a catalyst prepared by slow pyrolysis process under various temperatures from 400 ᴼC to 800 ᴼC. The char prepared at 700 ᴼC considered as a best one between the others which was manufactured to activate the transesterification reaction. GC have large scale of uses such as liquid membrane in gas separation, surfactants ,detergents , blowing agent , in plastics industry, in Pharmaceutical industry and electrolytes in lithium batteries. Yield percent of GC is 9.3% without catalyze the reaction with char whereas in case of bio-char used the GC yield increases to 67.80%. When the catalyst modified with 3 molar concentration of sodium hydroxide, the yield of glycerol carbonate obtained 98.3% and complete conversion. All the reaction in this study performed under conditions 60ᴼC, 90 min, 3:1 DMC:G and 3%wt. catalyst loading.
This study investigates the characterization and mechanical performance of Stone Mastic Asphalt (SMA) mixtures modified with two types of polymers: styrene–butadiene–styrene (SBS) and high-molecular-weight polyethylene (PE). Neat asphalt cement PG 64-16 was modified using a higher content of SBS and PE at concentrations of 6%, 7%, and 8% by weight of asphalt through the dry blending method to produce Highly Modified Asphalts (HiMA). The physical and rheological properties of the modified binders were evaluated using penetration, softening point, rotational viscosity, and dynamic shear rheometer (DSR) tests. Also, their phase compatibility and morphological changes were evaluated using the storage stability testing and scanning electron
... Show MoreAdvancing the multi-scale performance of asphalt pavements requires innovative binder modifications that address limitations in rutting resistance, fatigue resistance, and durability across the binder, mixture, and structural levels. This study evaluates the performance of asphalt cement, mixtures, and pavement systems modified with a combination of polyethylene (PE) and carbon nanotubes (CNTs). The binder was modified using 4% PE and varying CNT contents (0.5%, 1%, 1.5%, and 2% by weight of the modified binder). Binder performance was assessed through conventional and rheological tests, including penetration, softening point, viscosity, performance grade (PG) evaluation, and master curve analysis. Mixture-level performance was eval
... Show MoreAdvancements in horizontal drilling technologies are utilized to develop unconventional resources, where reservoir temperatures and pressures are very high. However, the flocculation of bentonite in traditional fluids at high temperature and high pressure (HTHP) environments can lower cuttings transportation efficiency and even result in problems such as stuck pipe, decreased rate of penetration (ROP), accelerated bit wear, high torque, and drag on the drill string, and formation damage. The major purpose of the present research is to investigate the performance of low bentonite content water-based fluids for the hole cleaning operation in horizontal drilling processes. Low bentonite content water-based drilling fluids were formulated by re
... Show MoreA new class of biologically active nanocomposites and modified polymers based on poly (vinyl alcohol) (PVA) with some organic compounds [II, IV, V and VI] were synthesized using silver nanoparticles (Ag-NPs). All compounds were synthesized using nucleophilic substitution interactions and characterized by FTIR, DSC and TGA. The biological activity of the modified polymers was evaluated against: gram (+) (staphylococcus aureus) and gram (-): (Es cherichia coli bacteria). Antimicrobial films are developed based on modified poly (vinyl alcohol) MPVA and Ag-NPs nanoparticles. The nanocomposites and modified polymers showed better antibacterial activities against Escherichia coli (Gram negative) than against Staphyloc
... Show MoreWater quality assessment offers a scientific basis for water resource development and management. This research aims to assessment of Al-Rustamiya sewage treatment plant depending on annually changes and produces maps that declare changes on parameter during a period (2015-2018). Based on prior Government Department Baghdad Environment data which annually feature changes for samples from Northern Rustamiya have been estimated as a working model. Drawn a map of the Diyala River shows annual changes in the characteristics of the Diyala River, based on northern and southern Rustamiya effluent samples, and Diyala River samples. The characteristics that research focused on were biochemical
There is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn