The aim of this study is for testing the applicability of Ramamoorthy and Murphy method for identification of predominant pore fluid type, in Middle Eastern carbonate reservoir, by analyzing the dynamic elastic properties derived from the sonic log. and involving the results of Souder, for testing the same method in chalk reservoir in the North Sea region. Mishrif formation in Garraf oilfield in southern Iraq was handled in this study, utilizing a slightly-deviated well data, these data include open-hole full-set logs, where, the sonic log composed of shear and compression modes, and geologic description to check the results. The Geolog software is used to make the conventional interpretation of porosity, lithology, and saturation. Also, include PVT and water analyses as inputs in Batzle and Wang correlations in order to calculate mechanical properties of oil and water at reservoir conditions. The shear velocity and density logs are used to calculate the shear modulus (G), for each (0.1254) meter. The dry frame bulk modulus correlation of the original method was not followed, instead, a new dry frame bulk modulus correlation of Saxena is used to avoid the uncertainty in the porosity type exist in the formation which needs special core description. Then, Gassmann’s equations were used to determine the bulk moduli of the rock assuming two saturation conditions; the first is 100% water saturated, and the second is 100% oil saturated. Using elastic properties equations of Love’s, and the resulted bulk moduli, two corresponding ∆t(s), (for oil and for water), were computed for each depth level. Then these ∆t(s) were plotted with sonic ∆t in the same track, and compiled with the conventional log interpretation, to compare the results. The method was a good indicator of the fluid type in the high porosity zones, unlike for the tight or clay-rich zones. The results are very conformable to the conventional interpretation, the OWC in both model and conventional interpretation are so close with error percentage of (0.03%).
In this research, porous silicon (PS) prepared by anodization etching on surface of single crystalline p-type Si wafer, then Gold nanoparticle (AuNPs) prepared by pulsed laser ablation in liquid. NPs deposited on PS layer by drop casting. The morphology of PS, AuNPs and AuNPs/PS samples were examined by AFM. The crystallization of this sample was characterized by X-ray diffraction (XRD). The electrical properties and sensitivity to CO2 gas were investigated to Al/AuNPs/PS/c-Si/Al, we found that AuNPs plays crucial role to enhance this properties.
Information about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites
... Show MoreIn this work, polyvinylpyrrolidone (PVP)/ Multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared with two concentrations of MWCNTs by casting method. Morphological, structural characteristics and electrical properties were investigated. The state of MWCNTs dispersion in a PVP matrix was indicated by Field Effect-Scanning Electron Microscopy (FESEM) which showed a uniform dispersion of MWCNTs within the PVP matrix. X-ray Diffraction (XRD) indicate strong bonding of carbonyl groups of PVP composite chains with MWCNTs. Fourier transfer infrared (FTIR) studies shows characteristics of various stretching and bending vibration bands, as well as shifts in some band locations and intensity changes in others. Hall effect was studied
... Show MoreIn this work, polyvinylpyrrolidone (PVP)/ Multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared with two concentrations of MWCNTs by casting method. Morphological, structural characteristics and electrical properties were investigated. The state of MWCNTs dispersion in a PVP matrix was indicated by Field Effect-Scanning Electron Microscopy (FESEM) which showed a uniform dispersion of MWCNTs within the PVP matrix. X-ray Diffraction (XRD) indicate strong bonding of carbonyl groups of PVP composite chains with MWCNTs. Fourier transfer infrared (FTIR) studies shows characteristics of various stretching and bending vibration bands, as well as shifts in some band locations and intensity changes in others. Hall effect was stu
... Show MoreMaintaining the quality of apricot fruits during storage is not an easy task due to the changes in their physical and chemical properties, so it is necessary to use less expensive, easy to apply, environmentally friendly, and safer preservatives to maintain the nutritional value of apricot. The damage to some fruits during storage can be a source of infection, which leads to the damage of healthy fruits more quickly, which requires building an intelligent model to detect damaged fruits. The aim of the research is to study the effect of immersing apricots in lemon juice once and sugar-water solution again on the quality properties of apricots, including sweetness, color, hardness, and water content. On the other hand, the YOLOv7 algorithm wa
... Show MoreIodine-doped polythiophene thin films are prepared by aerosol assisted plasma jet polymerization at atmospheric pressure and room temperature. The doping of iodine was carried out in situ by employing iodine crystals in thiophene monomer by weight mixing ratios of 1%, 3%, 5% and 7%. The chemical composition analyses of pure and iodine-doped and heat-treated polythiophene thin films are carried out by FTIR spectroscopy studies. The optical band gaps of the films are evaluated from absorption spectrum studies. Direct transition energy gaps are determined from Tauc plots. The structural changes of polythiophene upon doping and the reduction of optical band gap are explained on the basis of the results obtained from FTIR spectroscopy, UV–V
... Show MoreThe pure ZnS and ZnS-Gr nanocomposite have been prepared
successfully by a novel method using chemical co-precipitation. Also
conductive polymer PPy nanotubes and ZnS-PPy nanocomposite
have been synthesized successfully by chemical route. The effect of
graphene on the characterization of ZnS has been investigated. X-ray
diffraction (XRD) study confirmed the formation of cubic and
hexagonal structure of ZnS-Gr. Dc-conductivity proves that ZnS and
ZnS-Gr have semiconductor behavior. The SEM proved that
formation of PPy nanotubes and the Gr nanosheet. The sensing
properties of ZnS-PPy/ZnS-Gr for NO2 gas was investigated as a
function of operating temperature and time under optimal condition.
The sensitivity,
Samples of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconductor were prepared by solid-state reaction method to study the effects of gold nanoparticles addition to the superconducting system, Nano-Au was introduced by small weight percentages (0.25, 0.50, 0.75, 1.0, and 1.25 weight %). Phase identification and microstructural
characterization of the samples were investigated using XRD and SEM. Moreover, DC electrical resistivity as a function of the temperature, critical current density Jc, AC magnetic susceptibility, and DC magnetization measurements were carried to evaluate the relative performance of samples. x-ray diffraction analysis showed that both (Bi,Pb)-2223 and Bi-2212 phases coexist in the samples having an orthorhombic crystal struct
The residual limb within the prosthesis, is often subjected to tensile or fatigue stress with varying temperatures. The fatigue stress and temperatures difference which faced by amputee during his daily activities will produces an environmental media for growth of fungi and bacteria in addition to the damage that occurs in the prosthesis which minimizingthe life of the prosthetic limb and causing disconfirm feeling for the amputee.
In this paper, a mechanical and thermal properties of composite materials prosthetic socket made of different lamination for perlon/fiber glass/perlon, are calculated by using tesile test device under varying temperatures ( from 20oC to 60oC), also in this paper a device for measuring rotational bendin
... Show MoreIn this paper, the effect of sulfur substitution by arsenic on the structural, optical properties of thin films of the trivalent chalcogenide Se66S44-xAsx at different concentrations (where x = 0, 8, 16, and 24 at %) was studied. Thin films with a thickness of (300±10 nm) were prepared using thermal evaporation of bulk samples. Structural examinations were performed using XRD and AFM techniques. All the studied film samples were amorphous in structure and the intensity of the crystalline parts was high in the range of 10-40. Also, in Atomic Force Microscopy (AFM). It was found that increasing the concentration of arsenic affects the structural parameters such as surface roughness, particle density, and average grain size. As the ar
... Show More