The sorption of Cu2+ ions from synthetic wastewater using crushed concrete demolition waste (CCDW) which collected from a demolition site was investigated in a batch sorption system. Factors influencing on sorption process such as shaking time (0-300min), the initial concentration of contaminant (100-750mg/L), shaking speed (0-250 rpm), and adsorbent dosage (0.05-3 g/ml) have been studied. Batch experiments confirmed that the best values of these parameters were (180 min, 100 mg/l, 250 rpm, 0.7 g CCDW/100 ml) respectively where the achieved removal efficiency is equal to 100%. Sorption data were described using four isotherm models (Langmuir, Freundlich, Redlich-Peterson, and Radke-Prausnitz). Results proved that the pure adsorption and precipitation are the main mechanisms for removal of copper ions from aqueous solution onto CCDW and sorption data can be represented by Langmuir and Radke-Prausnitz model. The copper ion was successfully removed from aqueous solution during batch experiments using CCDW in the particle size range 2–1 mm. Scanning electron microscopy detected that the removal of Cu2+ was found to arise from surface precipitation.
γ-Al2O3–NPs were synthesized by a green synthesis process based on Boswellia carterii resin extract and aluminum sulphate in an alkaline medium. Boswellia carterii resin extract is a significant reducing and stabilizing agent for synthesizing γ-Al2O3–NPs.Several techniques, including Fourier–transform infrared (FT-IR), UV–visible spectroscopy, x-ray diffraction, electron microscopy (XRD), energy dispersive x-ray (EDX), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and atomic force microscopy (AFM), were utilized to investigate the final product. XRD and SEM confirmed a plate-like crystalline structure with an average size of 17.5 nm. FT-IR analysis identified aluminum oxide stretching vibrations (655,
... Show MoreThe experiment was carried out to study the effect of variety and gibberellic acid in concentration (0 and 50)mg.lat-1 and BL in five concentration (0, 0.50 ,1 ,2 and 3)mg.ltr-1 and their interaction in some chemical Characteristics and total chlorophyll for Dill plant . the experiment designed according Randomized Complete Block Design (RCBD) and three replicates per treatment, compared to the average using less significant difference at the level of probability (0.05) , the results showed the following:- The effect of brassinolide with it,s concentrations led to obtain a significant increase in all the studied characteristics, so the superiority of the concentration of 2 mg.L-1 of brassinolide in each of Ca, Mg,Fe, and total chlorophyll T
... Show MoreHigh performance self-consolidating concrete HP-SCC is one of the most complex types of concrete which have the capacity to consolidated under its own weight, have excellent homogeneity and high durability. This study aims to focus on the possibility of using industrial by-products like Silica fumes SF in the preparation of HP-SCC enhanced with discrete steel fibers (DSF) and monofilament polypropylene fibers (PPF). From experimental results, it was found that using DSF with volume fraction of 0.50 %; a highly improvements were gained in the mechanical properties of HP-SCC. The compressive strength, splitting tensile strength, flexural strength and elastic modulus improved about 65.7 %, 70.5 %, 41.7 % and 80.3 % at 28 days age, respectively
... Show MoreThe analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is
... Show MoreThis investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
This research is carried out to investigate the externally post-tensioning technique for strengthening RC beams. In this research, four T-section RC beams having the same dimensions and material properties were casted and tested up to failure by applying two mid-third concentrated loads. Three of these beams are strengthened by using external tendons, while the remaining beam is kept without strengthening as a control beam. Two external strands of 12 mm diameter were fixed at each side of the web of the strengthened beams and located at depth of 200 mm from top fiber of the section (dps). So that the depth of strands to overall depth of the section ratio (dps
... Show MoreIn this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of t
... Show MoreFour simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to lo
... Show MoreConsuming of by-product or waste materials in highway engineering is significant in the construction of new roads and/or in renovations of the existing ones. Pulverised Fuel ash (PFA), which is a by-product material of burning coal in power stations, is one of these materials that might be incorporated instead of mineral filler in hot asphalt mixtures.
Two types of surface course mixtures have been prepared one with conventional mineral filler i.e. ordinary Portland cement (OPC) while the second was with PFA. Several testings have been conducted to indicate the mechanical properties which were Marshall Stability and Indirect Tensile Strength tests. On the other hand, moisture damage and ageing have been evaluated
... Show More