Catalytic wet air oxidation of aqueous phenol solution was studied in a pilot plant trickle bed reactor using copper
oxide catalyst supported on alumina and silica. Catalysts were prepared by impregnating method. Effect of feed solution
pH (5.9, 7.3, and 9.2), gas flow rate (20%, 50%, 80%, and 100%), WHSV (1, 2, and 3 h-1), temperature (120°C, 140°C,
and 160°C), oxygen partial pressure (6, 9, 12 bar), and initial phenol concentration (1, 2, and 4 g/l).Generally, the
performance of the catalysts was better when the pH of feed solution was increased. The catalysts deactivation is related
to the dissolution of the metal oxides from the catalyst surface due to the acidic conditions. Phenol oxidation reaction
was strongly affected by WHSV, temperature, oxygen partial pressure, and initial phenol concentration. While gas flow
rate had a marginal effect.
Performance of gas-solid spouted bed benefit from solids uniformity structure (UI).Therefore, the focus of this work is to maximize UI across the bed based on process variables. Hence, UI is to be considered as the objective of the optimization process .Three selected process variables are affecting the objective function. These decision variables are: gas velocity, particle density and particle diameter. Steady-state solids concentration measurements were carried out in a narrow 3-inch cylindrical spouted bed made of Plexiglas that used 60° conical shape base. Radial concentration of particles (glass and steel beads) at various bed heights and different flow patterns were measured using sophisticated optical probes. Stochastic Genetic
... Show MoreChanging oil-wet surfaces toward higher water wettability is of key importance in subsurface engineering applications. This includes petroleum recovery from fractured limestone reservoirs, which are typically mixed or oil-wet, resulting in poor productivity as conventional waterflooding techniques are inefficient. A wettability change toward more water-wet would significantly improve oil displacement efficiency, and thus productivity. Another area where such a wettability shift would be highly beneficial is carbon geo-sequestration, where compressed CO2 is pumped underground for storage. It has recently been identified that more water-wet formations can store more CO2. We thus examined how silica based nanofluids can induce such a wettabil
... Show MoreA solar updraft tower power plant (solar tower) is a solar thermal power plant that utilizes a combination of solar
air collector and central updraft tube to generate an induced convective flow which drives pressure staged turbines to generate electricity.
This paper presents practical results of a prototype of a solar chimney with thermal mass, where the glass surface is replaced by transparence plastic cover. The study focused on chimney's basements kind effect on collected air temperatures. Three basements were used: concrete, black concrete and black pebbles basements. The study was conducted in Baghdad from August to November 2009.
The results show that the best chimney efficiency attaine
... Show MoreIn this paper, a theoretical analysis of optimum bed thickness operates under mass transfer control for realizing a high efficiency and reaction conversion of an electrochemical reactor has been made based on flowthrough porous electrode (FTPE) configuration. Many models have been used to represent the optimum bed thickness by taking a look into previous works concerned and collecting all related information, data, and models. The parameters that affect the optimum bed thickness have been visualized and reviewed, and almost all of them have been examined by experimental data from different sources and based on the various models. It has been found that the increase in electrolyte flow rate, concentration, limiting current density, and sp
... Show MoreIn the present study, free convection heat and mass transfer of fluid in a square packed bed enclosure is numerically investigated. For the considered geometrical shape, the left vertical wall of enclosure was assumed to be kept at high temperature and concentration while the opposite wall was kept at low temperature and concentration with insulating both the top and bottom walls of enclosure. The Brinkman– Forchheimer extended Darcy model was used to solve the momentum equations, while the energy equations for fluid and solid phases were solved by using the local thermal non-equilibrium (LTNE) model.Computations are performed for a range of the Darcy number from 10-5 to 10-1, the porosity from 0.5 to 0.9, and buoyancy ratio from -15 t
... Show MoreThe present work reports a direct experimental comparison of the catalytic hydrodesulfurization of
thiophene over Co-Mo/Al2O3 in fixed- and fluidized-bed reactors under the same conditions. An
experimental pilot plant scale was constructed in the laboratories of chemical engineering department,
Baghdad University; fixed-bed unit (2.54 cm diameter, and 60cm length) and fluidized-bed unit (diameter of 2.54 cm and 40 cm long with a separation zone of 30 cm long and 12.7 cm diameter). The affecting
variables studied in the two systems were reaction temperature of (308 – 460) oC, Liquid hourly space
velocity of (2 – 5) hr-1, and catalyst particle size of (0.075-0.5) mm. It was found in both operations that the
conversion
An electrocoagulation process has been used to eliminate the chemical oxygen demand (COD) from wastewaters discharged from the Al-Muthanna petroleum refinery plant. In this process, a circular aluminum bar was used as a sacrificial anode, and hallow cylinder made from stainless steel was used as a cathode in a tubular batch electrochemical Reactor. Impacts of the operating factors like current density (5-25mAcm-2), NaCl addition at concentrations (0-2g/l), and pH at values (3-11) on the COD removal efficiency were studied.
Results revealed that the increase in current density increases the COD removal efficiency, whereas an increase
This work was conducted to study the recovery of catalyst and desirable components from tar formed in phenol production unit and more particularly relates to such a method whereby better recovery of copper salts, phenol, benzoic acid and benzoate salts from tar by aqueous acid solution was accomplished.
The effect of solvent type, solvent concentration (5, 10, 15, 20, 25 and 30 wt%), agitation speed (100, 200, 300 and 400 rpm), agitation time (5, 10, 15, 20 and 25 min), temperature (90, 100, 110, 120, 130 and 140 oC) , phase ratio (1/1, 2/1, 3/1, 4/1 and 5/1) and number of extraction (1, 2, 3, 4, and 5) were examined in order to increase the catalyst and desirable components extraction.
Four types of solvent were used; hydrochloric
The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w
... Show More
