The corrosion of carbon steel in single phase (water with 0.1N NaCl ) and two immiscible phases (kerosene-water) using turbulently agitated system is investigated. The experiments are carried out for Reynolds number (Re) range of 38000 to 95000 corresponding to rotational velocities from 600 to 1400 rpm using circular disk turbine agitator at 40 0C. In two-phase system test runs are carried out in aqueous phase (water) concentrations of 1 % vol., 5 % vol., 8% vol., and 16% vol. mixed with kerosene at various Re. The effect of Reynolds number (Re), percent of dispersed phase, dispersed drops diameter, and number of drops per unit volume on the corrosion rate is investigated and discussed. Test runs are carried out using two types of inhibitors: sodium nitrite of concentrations 20, 40, and 60 ppm and sodium hexapolyphosphate of concentrations 485, 970, and 1940 ppm in a solution containing 8 % vol. aqueous phase (water) mixed with kerosene (continuous phase) at 40 °C for the whole range of Re. It was found that increasing Re increases the corrosion rate and the presence of water enhances the corrosion rate by increasing the solution electrical conductivity. For two phase solution containing 8% vol. and 16% vol. of water the corrosion rate was higher than single phase (100 % vol. water). The main parameters that play the major role in determining the corrosion rate in two phase were concentration of oxygen, solution electrical conductivity, and the interfacial area between the two phases (dispersed and continuous). Sodium nitrite and sodium hexapolyphosphate were found to be efficient inhibitors in two phase solutionfor the investigated range of Re.
The extraction of Eucalyptus oil from Iraqi Eucalyptus Camadulensis leaves was studded using water distillation methods. The amount of Eucalyptus oil has been determined in a variety of extraction temperature and agitation speed. The effect of water to Eucalyptus leaves (solvent to solid) ratio and particle size of Eucalyptus leaves has been studied in order to evaluate the amount of Eucalyptus oil. The optimum experimental condition for the Eucalyptus oil extraction was established as follows: 100 C extraction temperature, 200 rpm agitation speed; 0.5 cm leave particle size and 6: 1 ml: g amount of water to eucalyptus leaves Ratio.
Poly urea formaldehyde –Bentonite (PUF-Bentonite) composite was tested as new adsorbent
for removal of mefenamic acid (MA) from simulated wastewater in batch adsorption
procedure. Developed a method for preparing poly urea formaldehyde gel in basic media by
using condensation polymerization. Adsorption experiments were carried out as a function of
water pH, temperature, contact time, adsorbent dose and initial MA concentration .Effect of
sharing surface with other analgesic pharmaceuticals at different pH also studied. The
adsorption of MA was found to be strongly dependent to pH. The Freundlich isotherm model
showed a good fit to the equilibrium adsorption data. From Dubinin–Radushkevich model the
mean free
A study of irrigation water was conducted Baghdad city to find out extent of its pollution by some heavy metals (Pb, Cd, Ni, Co, CU, Cr, Zn and Fe). Water samples were collected randomly from different sources (river, well and stream). Results showed that the concentration of studied heavy metals were as follows: Lead between 0.43-11.75 mg L-1, Cadmium between 0.01-0.95 mg L-1, Nickel between 0.008-0.46 mg L-1, Cobalt between Nil - 0.185 mg L-1, Copper is between 0.326 - 1.58 mg L-1, Chromium is between Nil-0.068 mg L-1, Zinc 0.398-1.182 mg L-1, as for Iro
We have studied the effect of applying an external magnetic field on the characteristics of iron oxide (IO) nanoparticles (NPs) synthesized by pulsed laser ablation in dimethylformamide (DMF). The NPs synthesized with and without applying of magnetic field were characterized by Fourier transformation infrared spectroscopy (FT-IR), UV–Vis absorption, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD). SEM results confirmed that the particle size was decreased after applying magnetic field.
The present study explores numerically the energy storage and energy regeneration during Melting and Solidification processes in Phase Change Materials (PCM) used in Latent Heat Thermal Energy Storage (LHTES) systems. Transient two-dimensional (2-D) conduction heat transfer equations with phase change have been solved utilizing the Explicit Finite Difference Method (FDM) and Grid Generation technique. A Fortran computer program was built to solve the problem. The study included four different Paraffin's. The effects of container geometrical shape, which included cylindrical and square sections of the same volume and heat transfer area, the container volume or mass of PCM, variation of mass flow rate of heat transfer fluid (HTF), and temp
... Show MoreIn this work, fluid catalytic cracking of vacuum gas oil to produce gasoline over prepared faujasite type Y zeolite was investigated using experimental laboratory plant scale of fluidized bed reactor.
The catalytic activity of prepared faujasite type NaY, NaNH4Y and NaHY zeolites was investigated. The cracking process was carried out in the temperature range 440 to 500 oC, weight hourly space velocity (WHSV) range 10 to 25 h-1 ,and atmospheric pressure . The catalytic activities of the prepared faujasite type NaY , NaNH4Y and NaHY zeolites were determined in terms of vacuum gas oil (VGO) conversion, and gasoline yield . The conversion at 500oC and WHSV10 hr-1 by using faujasite type NaY, NaNH4Y and NaHY zeolite were 50.2%, 64.1% and 6
In this study, the sonochemical degradation of phenol in water was investigated using two types of ultrasonic wave generators; 20 kHz ultrasonic processor and 40 kHz ultrasonic cleaner bath. Mineralization rates were determined as a function of phenol concentration, contact time, pH, power density, and type of ultrasonic generator. Results revealed that sonochemical degradation of the phenol conversion was enhanced at increased applied power densities and acidic conditions. At 10 mg/L initial concentration of phenol, pH 7, and applied power density of 3000 W/L, the maximum removal efficiency of phenol was 93% using ultrasonic processor at 2h contact time. Whereby, it was 87% using and ultrasonic cleaner bath at 16h contact time and 150 W
... Show MoreWith the spread of the use of liquefied petroleum gas (LPG) in developing countries for use in domestic cooking with the increase in the expansion and distribution of gas pipelines for residential buildings, the 2002 World Summit focused on sustainable development in clean energy for natural gas (NG) and LPG. The research aims to focus on the important aspects of design sustainability from an environmental point of view to reduce gas leakage, accidents, and explosions that occur socially to expand the distribution of LPG and motivate the consumers to use it instead of natural gas and other fuels, and from an economic point of view to take into account the annual cost and aesthetic imp