This work was conducted to study the oxidation of phenol in aqueous solution using copper based catalyst with zinc as promoter and different carrier, i.e. γ-Alumina and silica. These catalysts were prepared by impregnation method.
The effect of catalyst composition, pH (5.6-9), phenol to catalyst concentration ratio (2-0.5), air feed rate (30-50) ml/s, stirring speed (400-800) rpm, and temperature (80-100) °C were examined in order to find the best conditions for phenol conversion.
The best operating conditions which lead to maximum phenol conversion (73.1%) are : 7.5 pH, 4/6 phenol to catalyst concentration, 40 ml/s air feed rate, 600 rpm stirring speed, and 100 °C reaction temperature. The reaction involved an induction period and a steady state activity regime. Both of the regimes exhibiting first order behavior with respect to the phenol concentration. The rate constants k1 and k2 for the initial rate and steady state activity regime are represented by k1=1.9×10-3 ((cm3liq/gcat) 0.5s-1 and k2= 2.4×10-10 ((cm3liq/gcat) 2 s-1) respectively.
Phenol is one of the worst-damaging organic pollutants, and it produces a variety of very poisonous organic intermediates, thus it is important to find efficient ways to eliminate it. One of the promising techniques is sonoelectrochemical processing. However, the type of electrodes, removal efficiency, and process cost are the biggest challenges. The main goal of the present study is to investigate the removal of phenol by a sonoelectrochemical process with different anodes, such as graphite, stainless steel, and titanium. The best anode performance was optimized by using the Taguchi approach with an L16 orthogonal array. the degradation of phenol sonoelectrochemically was investigated with three process parameters: current de
... Show MoreAs a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show MoreThis study introduced the effect of using magnetic abrasive finishing method (MAF) for finishing flat surfaces. The results of experiment allow considering the MAF method as a perspective for finishing flat surfaces, forming optimum physical mechanical properties of surfaces layer, removing the defective layers and decreasing the height of micro irregularities. Study the characteristics which permit judgment parameters of surface quality after MAF method then comparative with grinding
Recovery of time-dependent thermal conductivity has been numerically investigated. The problem of identification in one-dimensional heat equation from Cauchy boundary data and mass/energy specification has been considered. The inverse problem recasted as a nonlinear optimization problem. The regularized least-squares functional is minimised through lsqnonlin routine from MATLAB to retrieve the unknown coefficient. We investigate the stability and accuracy for numerical solution for two examples with various noise level and regularization parameter.
Zigbee, which has the standard IEEE 802.15.4. It is advisable method to build wireless personal area network (WPAN) which demands a low power consumption that can be produced by Zigbee technique. Our paper gives measuring efficiency of Zigbee involving the Physical Layer (PL) and Media Access Control (MAC) sub-layer , which allow a simple interaction between the sensors. We model and simulate two different scenarios, in the first one, we tested the topological characteristics and performance of the IEEE802.15.4 standard in terms of throughput, node to node delay and figure of routers for three network layouts (Star, Mesh and Cluster Tree) using OPNET simulator. The second scenario investigates the self-healing feature on a mesh
... Show MoreBacteria could produce bacterial nanocellulose through a procedure steps: polymerization and crystallization, that occur in the cytoplasm of the bacteria, the residues of glucose polymerize to (β-1,4) lineal glucan chains that produced from bacterial cell extracellularly, these lineal glucan are converted to microfbrils, after that these microfbrils collected together to shape very pure three dimensional pored net. It could be obtained a pure cellulose that created by some M.O, from the one of the active producer organism like Acetic acid bacteria (AAB), that it is a gram -ve, motile and live in aerobic condition. The bacterial nanocellulose (BNC) have great consideration in many fields because of its flexible properties, features
... Show MoreThis research dealt with desalting of East Baghdad crude oil using pellets of either anionic, PVC, quartz, PE, PP or
nonionic at different temperature ranging from 30 to 80 °C, pH from 6 to 8, time from 2 to 20 minutes, volume percent
washing water from 5 to 25% and fluid velocity from 0.5 to 0.8 m/s under voltage from 2 to 6 kV and / or using additives
such as alkyl benzene sulphonate or sodium stearate. The optimum conditions and materials were reported to remove
most of water from East Baghdad wet crude oil.
This paper studies the effects of stiffeners on shear lag in steel box girders with stiffened flanges. A three-dimensional linear finite element analysis using STAAD.Pro V8i program has been employed to evaluate and determine the actual top flange stress distribution and effective width in steel box girders. The steel plates of the flanges and webs have been modeled by four-node isoparametric shell elements, while the stiffeners have been modeled as beam elements. Different numbers (4, 8, and 15) for the steel stiffeners have been used in this study to establish their effects on the shear lag and longitudinal stresses in the flange. Using stiffeners reduced the magnitude of the top flange longitudinal stresses about 40%, but did
... Show More