The effect of operating parameters on the batch scale separation of hydrocarbon mixture (benzene and hexane) using
emulsion liquid membrane technique is reported. Sparkleen detergent was used as surfactant and heavy mineral oil as
solvent to receive the permeates.
From the experimental results, the parameters that influenced the permeation are, composition of feed, contact time
with solvent, ratio of volume of solvent to volume of hydrocarbon feed, ratio of volume of surfactant solution to volume
of hydrocarbon feed, surfactant concentration, mixing intensity and glycerol as polar additive in the surfactant solution
to eliminate drop breakup.
The best conditions for the separation in this study were found to be: composition of feed (mole fraction of
benzene=0.5245), contact time of 10min. , ratio of volumes of solvent to feed equal 3.5 , ratio of volumes of surfactant
solution to feed of 0.4, surfactant concentration of 1wt%, mixing intensity equal 1000rpm and 70% by weight of polar
additive. These conditions gave a separation factor of (8.0).
A simple, accurate and rapid method for separation and determination of most commonly usedinsecticides in Iraq [thiamethoxam (Thi), imidacloprid (Imi), indoxacarb (Ind), and abamectin (Aba)] ispresented. The separation was performed by gradient reversed-phase high performance liquidchromatography on a C18 stationary phase column. The method was developed and validated. The-1mobile phase was a mixture of acetonitrile and water using gradient flow. The flow rate was 1.0 mL min .The optimum temperature of separation was 25 ºC. The detection was performed at multiple wavelengths.The analysis time was up to 10.5 minutes with retention times of 3.221, 3.854, 6.385, and 9.452 min for-1the studied insecticides. The linearity was in the range of 0.
... Show MoreLiquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the
The solvent free oxidation of benzyl alcohol was conducted employing Au and Pd supported catalysts, while utilizing hydrogen peroxide 35% (H2O2) as the oxidant, H2O2 is very cheap, mild, and an environment friendly reagent, which produced water as the only by-product. Various proportions of Au-Pd catalysts on carbon and titanium oxide activated as supports were synthesized through the use of sol immobilization catalyst synthesis technique. Characterization of the synthesized catalysts was performed using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). It was found that the synthesized Au-Pd/ activated carbon catalyst was benef
... Show MoreRefrigerant R134a has been widely utilized in automotive air conditioning systems (AACSs); R134a has a high global warming potential (GWP) of 1430 despite having zero ozone depletion potential (ODP). Coming refrigeration systems must include refrigerants with low GWP and zero ODP. The aim of this experimental study is to evaluate the thermal performance of an (AAC) with different values of compressor speeds, i.e., (1000, 1700, and 2400 rpm) and two thermal loads, i.e., (500 and 1000 Watt) with the absence and presence of liquid suction heat exchanger (LSHX) using R134a. The results showed that adding LSHX enhanced the COP cycle by 7.18%, 10.7%, and 3.09% for the first, second, and third speed, respectively, at 500 Watt, while the en
... Show MoreUnderstanding, promoting, and teaching media literacy is an important societal challenge. STEM educators are increasingly looking to incorporate 21st century skills such as media literacy into core subject education. In this paper we investigate how undergraduate Computer Science (CS) students can learn media literacy as a by-product of collaborative video tutorial production. The paper presents a study of 34 third-year CS undergraduates who, as part of their learning, were each asked to produce three video tutorials on Raspberry Pi programming, using a collaborative video production tool for mobile phones (Bootlegger). We provide results of both quantitative and qualitative analysis of the production process and resulting video tutorials,
... Show MoreThe research aims to use a new technology for industrial water concentrating that contains poisonous metals and recovery quantities from pure water. Therefore, the technology investigated is the forward osmosis process (FO). It is a new process that use membranes available commercial and this process distinguishes by its low cost compared to other process. Sodium chloride (NaCl) was used as draw solution to extract water from poisonous metals solution. The driving force in the FO process is provided by a different in osmotic pressure (concentration) across the membrane between the draw and poisonous metals solution sides. Experimental work was divided into three parts. The first part includes operating the forward osmosis process using T
... Show MoreIt is often noted that disordered materials have different chemical properties to their more “ordered” cousins. Quantifying these effects in terms of thermodynamics is challenging in part because disordered materials can be difficult to characterize and are frequently relatively unstable. During the course of our experiments to understand the effects of disorder in catalysts for water oxidation we observed that many disordered manganese and cobalt oxide water oxidation catalysts directly oxidized peroxide in contrast to their more ordered analogues which catalyzed its disproportionation, that is, MnO2+2H+ +H2O2! Mn2+ +2H2O+O2(oxidation) versus H2O2!H2O+1=2 O2(disproportionation). By measuring the efficiency for one reaction over the oth
... Show MorePorous silicon (PS) layers are prepared by anodization for
different etching current densities. The samples are then
characterized the nanocrystalline porous silicon layer by X-Ray
Diffraction (XRD), Atomic Force Microscopy (AFM), Fourier
Transform Infrared (FTIR). PS layers were formed on n-type Si
wafer. Anodized electrically with a 20, 30, 40, 50 and 60 mA/cm2
current density for fixed 10 min etching times. XRD confirms the
formation of porous silicon, the crystal size is reduced toward
nanometric scale of the face centered cubic structure, and peak
becomes a broader with increasing the current density. The AFM
investigation shows the sponge like structure of PS at the lower
current density porous begi
In this work, ZnO quantum dots (Q.dots) and nanorods were prepared. ZnO quantum dots were prepared by self-assembly method of zinc acetate solution with KOH solution, while ZnO nanorods were prepared by hydrothermal method of zinc nitrate hexahydrate Zn (NO3)2.6H2O with hexamethy lenetetramin (HMT) C6H12N4. The optical , structural and spectroscopic properties of the product quantum dot were studied. The results show the dependence of the optical properties on the crystal dimension and the formation of the trap states in the energy band gap. The deep levels emission was studied for n-ZnO and p-ZnO. The preparation ZnO nanorods show semiconductor behavior of p-type, which is a difficult process by doping because native defects.