The present work is concerned with the finding of the optimum conditions for biochemical wastewater treatment for a local tannery. The water samples were taken from outline areas (the wastewater of the chrome and vegetable tannery) in equal volumes and subjected to sedimentation, biological treatment, and chemical and natural sedimentation treatment.
The Box-Wilson method of experimental design was adopted to find useful relationships between three operating variables that affect the treatment processes (temperature, aeration period and phosphate concentration) on the Biochemical Oxygen Demand (BOD5).
The experimental data collected by this method were successfully fitted to a second order polynomial mathematical model. The most favorable operating conditions for the treatment are;
Temperature 32.5oC,
Aeration period 10 hours and
phosphate concentration 16.8 mg/L.
On using the optimum conditions a mathematical model simulating the operation for the treatment was obtained.
Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit
Electro-chemical Machining is significant process to remove metal with using anodic dissolution. Electro-chemical machining use to removed metal workpiece from (7025) aluminum alloy using Potassium chloride (KCl) solution .The tool used was made from copper. In this present the optimize processes input parameter use are( current, gap and electrolyte concentration) and surface roughness (Ra) as output .The experiments on electro-chemical machining with use current (30, 50, 70)A, gap (1.00, 1.25, 1.50) mm and electrolyte concentration (100, 200, 300) (g/L). The method (ANOVA) was used to limited the large influence factors affected on surface roughness and found the current was the large influence f
... Show MoreThis work involves separating and studying the aminoacylase-1 (ACY1) of amniotic fluid from healthy pregnant, mainly one peak with higher activity has been isolated by DEAE-Cellulose ion exchange from the proteinous supernatant produced by deposition of proteins using ammonium sulfate (65%) after dialysis. The purification folds reaching to 19 folds also gave one protein peak when injected into the gel filtration column, a high ACY1 purity was obtained, with 38 folds of purification. It was found that the molecular weight of the isolated ACY1 was up to 46698 Dalton when using gel chromatography technique.The effect of ACY1 isolate was studied on rats with oxidative stress caused by lead acetate(LA) at 40 mg / kg body weight and compare
... Show MoreThe consequences of ionizing radiation-induced oxidative stress on radiographers in X-ray and CT-scan departments utilizing several biochemical were analyzed. The study found highly considerable discrepancies in the interplay between radiation levels and gender in terms of mean Malondialdehyde (MAD), Vitamin D3 (Vit.D3), Triiodothyronine (T3), Thyroxine (T4), and High-Density Lipoprotein (HDL), but not Thyroid Stimulating Hormone (TSH), cholesterol, triglyceride (TG) and Low-Density Lipoprotein (LDL). The findings indicated that malondialdehyde is a useful biomarker for assessing oxidative stress in radiographers with exposure to ionizing radiation.
Prodigiosin is a ‘natural red pigment produced by Serratia marcescens which exhibits immunosuppressive and anticancer properties in addition to antimicrobial activities. This work presents an attempt to maximize the production of prodigiosin by two different strategies: one factor at time (OFAT) and statistical optimization. The result of OFAT revealed that sucrose and peptone were the best carbon and nitrogen sources for pigment production with concentration of prodigiosin of about 135 mg/ L. This value was increased to 331.6mg/ L with an optimized ratio of C/N (60:40) and reached 356.8 with pH 6 and 2% inoculum size at end of classical optimization. Statistical experimental design based on Response surface methodology was co
... Show MoreSummary The aim of this study is the evaluation the resistance of S. marcescence obtained from soil and water to metals chlorides (Zn+2, Hg+2, Fe+2, Al+3, and Pb+2). Four isolates, identified as Serratia marcescence and S. marcescena (S4) were selected for this study according to their resistance to five heavy metals. The ability of S. marcescena (S4) to grow in different concentrations of metals chloride (200-1200 µg/ml) was tested, the highest concentration that S. marcescence (S4) tolerate was 1000 µg/ml for Zn+2, Hg+2, Fe+2, AL+3, pb+2 and 300 µg/ml for Hg+2 through 24 hrs incubation at 37 Co. The effects of temperature and pH on bacteria growth during 72 hrs were also studied. S. marcescence (S4) was affected by ZnCl2, PbCl2, FeC12
... Show More
Previously, many empirical models have been used to predict corrosion rates under different CO2 corrosion parameters conditions. Most of these models did not predict the corrosion rate exactly, besides it determined effects of variables by holding some variables constant and changing the values of other variables to obtain the regression model. As a result the experiments will be large and cost too much. In this paper response surface methodology (RSM) was proposed to optimize the experiments and reduce the experimental running. The experiments studied effects of temperature (40 – 60 °C), pH (3-5), acetic acid (HAc) concentration (1000-3000 ppm) and rotation speed (1000-1500 rpm) on CO2 corrosion performance of t
... Show More