A mathematical model and associated computer program were developed to simulate the steady state operation of wiped film evaporators for the concentration of glycerol-water solution. In this model, various assumptions were made to facilitate the mathematical model of the wiped film evaporator. The fundamental phenomena described were: sensible heating of the solution and vaporization of water. Physical property data were coded into the computer program, which performs the calculations of this model. Randomly selected experiments were carried out in a small scale wiped film evaporator from ALVAL COMPANY, using different concentrations of the glycerol solution (10, 30 and 50 Wt. %) for different feed rates (30, 50, 80, 100 and 120 l/h) and two values of steam jacket pressure (2 and 4 atm) to compare between experimental and simulation results. The statistical analysis gave correlation coefficient of 0.9972, average absolute error of 2.2527 % and F-test of 0.9639 which showed the high accuracy of the simulation work.
In this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.
The transfer function model the basic concepts in the time series. This model is used in the case of multivariate time series. As for the design of this model, it depends on the available data in the time series and other information in the series so when the representation of the transfer function model depends on the representation of the data In this research, the transfer function has been estimated using the style nonparametric represented in two method local linear regression and cubic smoothing spline method The method of semi-parametric represented use semiparametric single index model, With four proposals, , That the goal of this research is comparing the capabilities of the above mentioned m
... Show MoreUse of lower squares and restricted boxes
In the estimation of the first-order self-regression parameter
AR (1) (simulation study)
This research deals with the design and simulation of a solar power system consisting of a KC200GT solar panel, a closed loop boost converter and a three phase inverter by using Matlab / Simulink. The mathematical equations of the solar panel design are presented. The electrical characteristics of the panel are tested at the values of 1000 for light radiation and 25 °C for temperature environment. The Proportional Integral (PI) controller is connected as feedback with the Boost converter to obtain a stable output voltage by reducing the oscillations in the voltage to charge a battery connected to the output of the converter. Two methods (Particle Swarm Optimization (PSO) and Zeigler- Nichols) are used for tuning
... Show MoreReverse Osmosis (RO) has already proved its worth as an efficient treatment method in chemical and environmental engineering applications. Various successful RO attempts for the rejection of organic and highly toxic pollutants from wastewater can be found in the literature over the last decade. Dimethylphenol is classified as a high-toxic organic compound found ubiquitously in wastewater. It poses a real threat to humans and the environment even at low concentration. In this paper, a model based framework was developed for the simulation and optimisation of RO process for the removal of dimethylphenol from wastewater. We incorporated our earlier developed and validated process model into the Species Conserving Genetic Algorithm (SCG
... Show MoreThe simulation have been made for 3D flow structure and heat transfer with and without
longitudinal riblet upstream of leading edge vane endwall junction of first stage nozzle guide vane .The research explores concept of weakening the secondary flows and reducing their harmful effects.Numerical investigation involved examination of the secondary flows ,velocity and heat transfer rates by solving the governing equations (continuity, Navier -stokes and energy equations ) using the known package FLUENT version (12.1).The governing equations were solved for three dimentional, turbulent flowe, incompressible with an appropriate turbulent model (k-ω,SST) .The numerical solution was carried out for 25 mode
... Show MoreThe study was conducted at the fields of the Dept. of Horticulture and Garden Engineering, College of the Agricultural Engineering Sciences, Jadriyah in the fall season of 2020-2021 aiming to culture the coral lettuce with green and red leaves under the hydroponics system using the modified nutrient solution film NFT and study the effect of aqueous extracts of alfalfa and berseem sprouted seeds on the quantitative and qualitative yield of the lettuce crop. The research was conducted as an experiment of split plots within the Randomized Complete Block Design (RCBD) of three replicates. The seedlings of the green coral lettuce, Locarno RZ, and red coral lettuce, Locarno RZ, symbolized by A and B respectively, were transferred to the c
... Show MoreThe simulation study has been conducted for the harmonics of Nd: YAG laser, namely the second harmonic generation SHG, the third harmonic generation THG, and the fourth harmonic generation FHG. Determination of beam expander's expansion ratio for specific wavelength and given detection range is the key in beam expander design for determining minimum laser spot size at the target. Knowing optimum expansion ratio decreases receiving unit dimensions and increases its performance efficiency. Simulation of the above mentioned parameters is conducted for the two types of refractive beam expander, Keplerian and Galilean. Ideal refractive indices for the lenses are chosen adequately for Nd: YAG laser harmonics wavelengths, so that increasing transm
... Show MoreAbstract: This study aims to investigate the backscattering electron coefficient for SixGe1-x/Si heterostructure sample as a function of primary electron beam energy (0.25-20 keV) and Ge concentration in the alloy. The results obtained have several characteristics that are as follows: the first one is that the intensity of the backscattered signal above the alloy is mainly related to the average atomic number of the SixGe1-x alloy. The second feature is that the backscattering electron coefficient line scan shows a constant value above each layer at low primary electron energies below 5 keV. However, at 5 keV and above, a peak and a dip appeared on the line scan above Si-Ge alloy and Si, respectively, close to the interfacing line
... Show More