To reduce the effects of discharging heated water disposed into a river flow by a single thermal source, two parameters were changed to get the minimum effect using optimization. The first parameter is to distribute the total flow of the heated water between two disposal points (double source) instead of one and the second is to change the distance between these two points. In order to achieve the solution, a two dimensional numerical model was developed to simulate and predict the changes in temperature distribution in the river due to disposal of the heated water using these two points of disposal.
MATLAB-7 software was used to build a program that could solve the governing partial equations of thermal pollution in rivers by using the finite difference technique. The distribution of temperature in the river was presented by using the SURFER software that was used to draw the temperature contour lines and computing the areas of critical temperature (The area where the temperature exceed a certain selected value, which is believed to be critical for aquatic life). The optimum case was that which gave the minimum critical area.
The decision variables are the subdivided flow of the two disposal points, and the distance between these two points. The result had indicated that the optimum case can be achieved when the flow of first point was 0.1 from the total flow of heated water and the second was 0.9 from this total flow. The optimal distance between the two points was found to be 30 m.
The objective of this research paper is two-fold. The first is a precise reading of the theoretical underpinnings of each of the strategic approaches: "Market approach" for (M. Porter), and the alternative resource-based approach (R B V), advocates for the idea that the two approaches are complementary. Secondly, we will discuss the possibility of combining the two competitive strategies: cost leadership and differentiation. Finally, we propose a consensual approach that we call "dual domination".
This work aims to enhance acoustic and thermal insulation properties for polymeric composite by adding nanoclay and rock wool as reinforcement materials with different rations. A polymer blend of (epoxy+ polyester) as matrix materials was used. The Hand lay-up technique was used to manufacture the castings. Epoxy and polyester were mixed at different weight ratios involving (50:50, 60:40, 70:30, 80:20, and 90:10) wt. % of (epoxy: polyester) wt. % respectively. Impact tests for optimum sample (OMR), caustic and thermal insulation tests were performed. Nano clay (Kaolinite) with ratios ( 5 and 7.5% ) wt.% , also hybrid reinforcement materials involving (Kaolite 5 & 7.5 % wt.% + 10% volume fraction of rockwool ) were added as reinforcem
... Show MoreThe research aims to demonstrate the dual use of analysis to predict financial failure according to the Altman model and stress tests to achieve integration in banking risk management. On the bank’s ability to withstand crises, especially in light of its low rating according to the Altman model, and the possibility of its failure in the future, thus proving or denying the research hypothesis, the research reached a set of conclusions, the most important of which (the bank, according to the Altman model, is threatened with failure in the near future, as it is located within the red zone according to the model’s description, and will incur losses if it is exposed to crises in the future according to the analysis of stress tests
... Show MoreAn Optimal Algorithm for HTML Page Building Process
In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
In present work the effort has been put in finding the most suitable color model for the application of information hiding in color images. We test the most commonly used color models; RGB, YIQ, YUV, YCbCr1 and YCbCr2. The same procedures of embedding, detection and evaluation were applied to find which color model is most appropriate for information hiding. The new in this work, we take into consideration the value of errors that generated during transformations among color models. The results show YUV and YIQ color models are the best for information hiding in color images.
In this paper, the reliability and scheduling of maintenance of some medical devices were estimated by one variable, the time variable (failure times) on the assumption that the time variable for all devices has the same distribution as (Weibull distribution.
The method of estimating the distribution parameters for each device was the OLS method.
The main objective of this research is to determine the optimal time for preventive maintenance of medical devices. Two methods were adopted to estimate the optimal time of preventive maintenance. The first method depends on the maintenance schedule by relying on information on the cost of maintenance and the cost of stopping work and acc
... Show MoreAir pollution is one of the important problems facing Iraq. Air pollution is the result of uncontrolled emissions from factories, car exhaust electric generators, and oil refineries and often reaches unacceptable limits by international standards. These pollutants can greatly affect human health and regular population activities. For this reason, there is an urgent need for effective devices to monitor the molecular concentration of air pollutants in cities and urban areas. In this research, an optical system has been built consisting of aHelium-Neonlaser,5mWand at 632.8 nm, a glass cell with a defined size, and a power meter(Gentec-E-model: uno) where a scattering of the laser beam occurs due to air pollution. Two pollutants were examin
... Show More