Three cohesionless free flowing materials of different density were mixed in an air fluidized bed to study the mixing process by calculating performance of mixing index according to Rose equation (1959) and to study the effect of four variables (air velocity, mixing time, particle size of trace component and concentration of trace component) on the mixing index and as well as on mixing performance. It was found that mixing index increases with increasing the air velocity, mixing time and concentration of trace component until the optimum value. Mixing index depends on the magnitude of difference in particle size The first set of experiments (salt then sand then cast iron) give higher mixing index and better performance of mixing than the second set of experiments (sand then salt then cast iron). Box-Willson method was used to minimize number of experiments and to represent the relationship between the variables.
Background: Decontamination of gutta percha cones was important factor for success of root canal treatment. The aim of the present in vitro study was to identify and to compare the antimicrobial effect of following disinfection solutions: 0.2% chlorhexidine gluconate, Iodine, tetracycline hydrochloride solution, EDTA & formocresol mixed with zinc oxide eugenol, on E faecalis, E coli and Candida albicans using sensitivity test Materials and Methods: Three types of microorganisms were isolated from infected root canals (E faecalis, E coli and Candida albicans) and cultured on Mueller Hinton agar petri-dishes. Disinfection of gutta percha cones done by immersion in six disinfection solutions (six groups), the groups are: distill water (used a
... Show MoreAdsorption and ion exchange are examples of fixed-bed sorption processes that show transient behavior. This means that differential equations are needed to design them. As a result, numerical methods are commonly utilized to solve these equations. The solution frequently used in analytical methods is called the Thomas solution. Thomas gave a complete solution that adds a nonlinear equilibrium relationship that depends on second-order reaction kinetics. A computational approach was devised to solve the Thomas model. The Thomas model's validity was established by conducting three distinct sets of experiments. The first entails the adsorption of acetic acid from the air through the utilization of activated carbon. Following
... Show MoreIn this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficie
... Show MoreTreatment of a high strength acidic industrial wastewater was attempted by activated carbon
adsorption to evaluate the feasibility of yielding effluents of reusable qualities. The experimental
methods which were employed in this investigation included batch and column studies. The
former was used to evaluate the rate and equilibrium of carbon adsorption, while the latter was
used to determine treatment efficiencies and performance characteristics. Fixed bed and expanded
bed adsorbers were constructed in the column studies. In this study, the adsorption behavior of acetic acid onto activated carbon was examined as a function of the concentration of the adsorbate, contact time and adsorbent dosage. The adsorption data was mo
Key components estimated in Acol total plant leaves and the results were as follows plant Acol humidity 72%
In this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between
... Show MoreBackground: The new concepts and technologies continue to change the dynamics of endodontic practices in the world. Rapid and significant changes in techniques, instrument design, and the type of metals used to manufacture endodontic instruments which have been made during the last few years in an attempt to overcome canal preparation errors. The purpose of this study is to measure and compare canal transportation and centering ability of Self Adjusting File with two rotary nickel-titanium (Ni-Ti) systems, ProTaper and BioRaCe at different levels. Material and Methods: Forty five distal roots of mandibular first molars with moderate curvature were selected using Schneider method. Roots were divided randomly into 3 groups of 15 each and were
... Show MoreBackground: Because of the demands for aesthetic orthodontic appliances have increased, aesthetic archwires have been widely used to meet patient's aesthetic needs. The color stability of aesthetic archwires is clinically important, any staining or discoloration will affect patient’s acceptance and satisfaction. This study was designed to evaluate the color stability of different types of aesthetic archwires after immersion into different types of mouth washes. Materials and methods: Four brands of nickel titanium coated aesthetic arch wires: Epoxy coated (Orthotechnology and G&H) and Teflon coated (Dany and Hubit) were evaluated after 1 week, 3 weeks and 6 weeks of immersion into two types of mouthwashes (Listerine with alcohol and
... Show MoreDensity Functional Theory at the generalized-gradient approximation level coupled with large unit cell method is used to simulate the electronic structure of (II-VI) zinc-blende cadmium sulfide nanocrystals that have dimensions 2-2.5 nm. The calculated properties include lattice constant, conduction and valence bands width, energy of the highest occupied orbital, energy of the lowest unoccupied orbital, energy gap, density of states etc. Results show that lattice constant and energy gap converge to definite values. However, highest occupied orbital, lowest unoccupied orbital fluctuates indefinitely depending on the shape of the nanocrystal.