Portable and stationary electrical generators became quite popular in Iraq soon after the shortage in national electrical
energy after 2003. Multi step risk assessment process is used in this study in the assessment of risks caused by
contamination of indoor air by lead particles emitted from domestic electrical generators. Two portable electrical
generators are tested under controlled indoor conditions (Radial LG (0.9 keV) fueled with benzene and oil and TigMax
(3 keV), fueled with benzene only). Lead particles in air were sampled by using portable dust sampler (Sniffer, L-30).
The atmospheric particulate sampling process is carried out in a flat located in the first floor of a three stories building
located in Baghdad city, Al-Zafarania region. The lead concentration in the digested filter papers is measured by using
atomic absorption spectrophotometer (Buck, USA). Dose-to-risk conversion factor is applied in this study to estimate the
potential cancer risk to Baghdad’s population related to continuous inhalation of airborne lead at the mean observed
concentrations. The results of toxicity analysis indicate that public exposure to airborne lead at the mean observed
concentration of 4.991 g/m3 can increase the risk of cancer at a rate of 12 extra cancer cases in a group of million
exposed individuals. Males are found to be at greater risk than females because of higher inhalation rates. Children are
found to be the most sensitive group due to low body weight (about 101 expected additional cancer cases in a group of
million exposed child).
With the increasing rates of cancer worldwide, a great deal of scientific discourse is devoted to arguments and statements about cancer and its causes. Scientists from different fields try to seize any available chance to warn people of the risk of consuming and exposing to carcinogens that have, unfortunately, become essential parts of modern life. The present paper attempts to investigate the proximization strategy through which scientists construct carcinogen risk to enhance people’s preventive actions against these carcinogens. The paper targets the construction which depends on producing the conflict between the values of the people themselves and the contrasting values assigned to carcinogens. To achieve this aim, Cap’s (2
... Show MoreObesity and cancer are two major epidemics of this century. Obesity is related to a higher risk of many types of cancer. Studies have accessed circulating adipokines, as key-mediators in obesity and breast cancer. The study is aimed to examine the circulating levels of insulin-like growth factor-1, leptin, adiponectin, and resistin in premenopausal Iraqi women with breast cancer. The current study was performed during the period from June 2019 to December 2019 at Oncology unit/ Medical City Hospital-Baghdad. A total of 90 premenopausal women with BC/ stage II and III after 2nd dose of chemotherapy were contributed in this study as patients group. Their ages ranged from (35- 50) years in addition to 90 premenopausal healthy women wer
... Show MoreThin films were prepared from poly Berrol way Ketrrukemaaih pole of platinum concentrations both Albaarol and salt in the electrolytic Alastontrel using positive effort of 7 volts on the pole and the electrical wiring of the membrane record
In this work, chemical oxidation was used to polymerize conjugated polymer "Polypyrrole" at room temperature Graphene nanoparticles were added by in situ-polymerization to get (PPY-GN) nano. Optical and Electrical properties were studied for the nanocomposites. optical properties of the nanocomposites were studied by UV-Vis spectroscopy at wavelength range (200 -800 nm). The result showed optical absorption spectra were normally determined and the result showed that the maximum absorbance wave length at 280nm and 590nm. The optical energy gap has been evaluated by direct transition and the value has decreased from (2.1 eV for pure PPy) to (1.3 eV for 5 %wt. of GN). The optical constants such as the band tail width ΔE was evaluated, the
... Show MoreDC planar sputtering system is characterized by varying discharge potential of (250-2000 volt) and Argon gas pressures of (3.5×10-2 – 1.5) mbar. The breakdown voltage for silver electrode was studied with a uniform electric field at different discharge distances, as well as plasma parameters. The breakdown voltage is a product of the Argon gas pressure inside the chamber and gab distance between the electrodes, represent as Paschen curve. The Current-voltage characteristics curves indicate that the electrical discharge plasma is working in the abnormal glow region. Plasma parameters were found from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values of the electron temperature an
... Show MoreInSb alloy was prepared then InSb:Bi films have been prepared successfully by thermal evaporation technique on glass substrate at Ts=423K. The variation of activation energies(Ea1,Ea2)of d.c conductivity with annealing temperature (303, 373, 423, 473, 523 and 573)K were measured, it is found that its values increases with increasing annealing temperature. To show the type of the films, the Hall and thermoelectric power were measured. The activation energy of the thermoelectric power is much smaller than for d.c conductivity and increases with increasing annealing temperature .The mobility and carrier concentration has been measured also.
Abstract
Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat
... Show More