Experimental study of heat transfer coefficients in air-liquid-solid fluidized beds were carried out by measuring the heat rate and the overall temperature differences across the heater at different operating conditions. The experiments were carried out in Q.V.F. glass column of 0.22 m inside diameter and 2.25 m height with an axially mounted cylindrical heater of 0.0367 m diameter and 0.5 m height. The fluidizing media were water as a continuous phase and air as a dispersed phase. Low density (Ploymethyl-methacrylate, 3.17 mm size) and high density (Glass beads, 2.31 mm size) particles were used as solid phase. The bed temperature profiles were measured axially and radially in the bed for different positions. Thermocouples were connected to an interface system and these measurements were monitored by computer on line. Theoretical analysis has been carried out to solve the differential equation governing heat transfer in the gas-liquid-solid fluidized system with its boundary conditions. Finite difference technique was used as a suitable numerical method to find the solution. By applying the temperature profiles found experimentally in solved equation, effective thermal conductivity values were found.
In every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho
... Show MoreIn this work, enhancement to the fluorescence characteristics of laser dye solutions hosting highly-pure titanium dioxide nanoparticles as random gain media. This was achieved by coating two opposite sides of the cells containing these media with nanostructured thin films of highly-pure titanium dioxide. Two laser dyes; Rhodamine B and Coumarin 102, were used to prepare solutions in hexanol and methanol, respectively, as hosts for the nanoparticles. The nanoparticles and thin films were prepared by dc reactive magnetron sputtering technique. The enhancement was observed by the narrowing of fluorescence linewidth as well as by increasing the fluorescence intensity. These parameters were compared to those of the dye only and the dye solution
... Show MoreThe degradation of Toluidine Blue dye in aqueous solution under UV irradiation is investigated by using photo-Fenton oxidation (UV/H2O2/Fe+). The effect of initial dye concentration, initial ferrous ion concentration, pH, initial hydrogen peroxide dosage, and irradiation time are studied. It is found put that the removal rate increases as the initial concentration of H2O2 and ferrous ion increase to optimum value ,where in we get more than 99% removal efficiency of dye at pH = 4 when the [H2O2] = 500mg / L, [Fe + 2 = 150mg / L]. Complete degradation was achieved in the relatively short time of 75 minutes. Faster decolonization is achieved at low pH, with the optimal value at pH 4 .The concentrations of degradation dye are detected by spectr
... Show MoreIA Ali, FK Emran, DF Salloom, Annals of the Romanian Society for Cell Biology, 2021