Preferred Language
Articles
/
ijcpe-384
PREDICTION OF FINITE CONCENTRATIONBEHAVIOR FROM INFINITE DILUTION EGUILIBRIUM DATA
...Show More Authors

Experimental activity coefficients at infinite dilution are particularly useful for calculating the parameters needed in an expression for the excess Gibbs energy. If reliable values of γ∞1 and γ∞2 are available, either from direct experiment or from a correlation, it is possible to predict the composition of the azeotrope and vapor-liquid equilibrium over the entire range of composition. These can be used to evaluate two adjustable constants in any desired expression for G E. In this study MOSCED model and SPACE model are two different methods were used to calculate γ∞1 and γ∞2

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Mining categorical Covid-19 data using chi-square and logistic regression algorithms
...Show More Authors

View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Sun Jul 25 2021
Journal Name
Natural Resources Research
Effect of Water Flooding on Oil Reservoir Permeability: Saturation Index Prediction Model for Giant Oil Reservoirs, Southern Iraq
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Mon Dec 25 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Oxygen Mass Transfer Coefficients in Stirred Bioreactor with Rushton Turbine Impeller for Simulated (Non-Microbial) Medias
...Show More Authors

 Abstract

The study of oxygen mass transfer was conducted in a laboratory scale 5 liter stirred bioreactor equipped with one Rushton turbine impeller. The effects of superficial gas velocity, impeller speed, power input and liquid viscosity on the oxygen mass transfer were considered. Air/ water and air/CMC systems were used as a liquid media for this study. The concentration of CMC was ranging from 0.5 to 3 w/v. The experimental results show that volumetric oxygen mass transfer coefficient increases with the increase in the superficial gas velocity and impeller speed and decreases with increasing liquid viscosity. The experimental results of kla were correlated with a mathematical correlation des

... Show More
View Publication Preview PDF
Publication Date
Fri May 21 2021
Journal Name
International Journal Of Pavement Research And Technology
Developing Resilient Modulus Prediction Models Based on Experimental Results of Crushed Hornfels Mixes with Different Gradations and Plasticity
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Prediction of the Effect of Using Stone Column in Clayey Soil on the Behavior of Circular Footing by ANN Model
...Show More Authors

Shallow foundations are usually used for structures with light to moderate loads where the soil underneath can carry them. In some cases, soil strength and/or other properties are not adequate and require improvement using one of the ground improvement techniques. Stone column is one of the common improvement techniques in which a column of stone is installed vertically in clayey soils. Stone columns are usually used to increase soil strength and to accelerate soil consolidation by acting as vertical drains. Many researches have been done to estimate the behavior of the improved soil. However, none of them considered the effect of stone column geometry on the behavior of the circular footing. In this research, finite ele

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Sep 08 2022
Journal Name
Al-khwarizmi Engineering Journal
Performance Prediction in EDM Process for Al 6061 Alloy Using Response Surface Methodology and Genetic Algorithm
...Show More Authors

The Electric Discharge (EDM) method is a novel thermoelectric manufacturing technique in which materials are removed by a controlled spark erosion process between two electrodes immersed in a dielectric medium. Because of the difficulties of EDM, determining the optimum cutting parameters to improve cutting performance is extremely tough. As a result, optimizing operating parameters is a critical processing step, particularly for non-traditional machining process like EDM. Adequate selection of processing parameters for the EDM process does not provide ideal conditions, due to the unpredictable processing time required for a given function. Models of Multiple Regression and Genetic Algorithm are considered as effective methods for determ

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A novel data offloading scheme for QoS optimization in 5G based internet of medical things
...Show More Authors

The internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of dat

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Matec Web Of Conferences
Assessing the performance of commercial Agisoft PhotoScan software to deliver reliable data for accurate3D modelling
...Show More Authors

3D models delivered from digital photogrammetric techniques have massively increased and developed to meet the requirements of many applications. The reliability of these models is basically dependent on the data processing cycle and the adopted tool solution in addition to data quality. Agisoft PhotoScan is a professional image-based 3D modelling software, which seeks to create orderly, precise n 3D content from fixed images. It works with arbitrary images those qualified in both controlled and uncontrolled conditions. Following the recommendations of many users all around the globe, Agisoft PhotoScan, has become an important source to generate precise 3D data for different applications. How reliable is this data for accurate 3D mo

... Show More
View Publication
Scopus (21)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Geological Journal
Structural Interpretation of Yamama and Naokelekan Formations in Tuba Oil Field Using 2D Seismic Data
...Show More Authors

This research includes structure interpretation of the Yamama Formation (Lower Cretaceous) and the Naokelekan Formation (Jurassic) using 2D seismic reflection data of the Tuba oil field region, Basrah, southern Iraq. The two reflectors (Yamama and Naokelekan) were defined and picked as peak and tough depending on the 2D seismic reflection interpretation process, based on the synthetic seismogram and well log data. In order to obtain structural settings, these horizons were followed over all the regions. Two-way travel-time maps, depth maps, and velocity maps have been produced for top Yamama and top Naokelekan formations. The study concluded that certain longitudinal enclosures reflect anticlines in the east and west of the study ar

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
A noval SVR estimation of figarch modal and forecasting for white oil data in Iraq
...Show More Authors

The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals

... Show More
View Publication Preview PDF
Scopus