In this work, the possibility of utilizing osmosis phenomenon to produce energy as a type of the renewable energy using Thin Film Composite Ultra Low Pressure membrane TFC-ULP was studied. Where by forward osmosis water passes through the membrane toward the concentrated brine solution, this will lead to raise the head of the high brine solution. This developed static head may be used to produce energy. The aim of the present work is to study the static head developed and the flux on the high brine water solution side when using forward and reverse osmosis membranes for an initial concentration range from 35-300 g/l for each type of membrane used at room temperature and pressure conditions, and finally calculating the maximum possible power generated from developed static head.
In this article the nanoparticles synthesis of ZnO (Nps) by using the precipitation method at concentrations range (0.5, 0.25, 0.125, 0.0625, 0.03125) mg/mL and then activity was examined against Streptococcus spp that causing dental caries in vitro by well diffusion method, find these concentrations effected in these bacteria and better concentration is 0.03125. ZnO Nps were characterization by EDS to prove this particles are ZnO, and also characterized by atomic force microscope (AFM), X-ray Diffraction (XRD) and TEM, from these technic found that the average size about 30.52 nm and hexagonal shape. The UV-visible result reveals that the large band is observed at 340.8 nm, Zeta potential show that the surface charge is 30.19 mv an
... Show MoreThis study aimed to investigate the effect of total suspended solids (TSS) on the performance of a continuously operated dual-chamber microbial fuel cell (MFC) proceeded by primary clarifier to treat actual potato chips processing wastewater. The system was also tested in the absence of the primary clarifier and the results demonstrated a significant effect of TSS on the polarization curve of the MFC which was obtained by operating the graphite anodic electrode against Ag/AgCl reference electrode. The maximum observed power and current densities were decreased form 102.42 mW/m2 and 447.26 mA/m2 to 80.16 mW/m2 and 299.10 mA/m2, respectively due to the adverse effect of TSS. Also
... Show MoreBreastfeeding (BF) serves as a complete nutritional source for the first six months of infant’s life. Breast milk contains all essential nutrients that necessary for the physiological growth and development of infants. The aim of this study was to compare the physiological growth of infants including weight, height and head circumference who were exclusively breastfed for 6 months and those who were given bottle-fed or mixed fed and to find a percentage of exclusive breastfeeding among mothers who contributed in this study in Sulaimani city. This study was carried out in Sulaimani city/ Kurdistan region of Iraq and the cases were enrolled between the first of October 2018 and first of October 2019. The infants’ weight, height and hea
... Show MoreForward-swept wings were researched and introduced to improve maneuverability, control, and fuel efficiency while reducing drag and they are often used alongside canards, to further enhance their characteristics. In this research, the effects of canard dihedral angles on the wing loading of a forward-swept wing in transonic flow conditions were studied, as the wing loading provides a measure of wing’s efficiency (lift/drag). A generic aircraft model from literatures was selected, simulated, and compared to, using CFD software ANSYS/Fluent where the flow equations were solved to calculate the aerodynamic characteristics. The research was carried at two different Mach numbers, 0.6 and 0.9, for five different canard dihedral angles which tra
... Show MoreThis study presents the findings of a 3D finite element modeling on the performance of a single pile under various slenderness ratios (25, 50, 75, 100). These percentages were assigned to cover the most commonly configuration used in such kind of piles. The effect of the soil condition (dry and saturated) on the pile response was also investigated. The pile was modeled as a linear elastic, the surrounded dry soil layers were simulated by adopting a modified Mohr-Coulomb model, and the saturated soil layers were simulated by the modified UBCSAND model. The soil-pile interaction was represented by interface elements with a reduction factor (R) of 0.6 in the loose sand layer and 0.7 in t
The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreThis study presents the effect of laser energy on burning loss of magnesium from the holes' drilled in aluminum alloy 5052. High energy free running pulsed Nd:Glass laser of 300 µs pulse duration has been used to perform the experiments. The laser energy was varied from 1.0 to 8.0 Joules, The drilling processes have been carried out under atmospheric pressure and vacuum inside a specially designed chamber. Microhardness of the blind drilled holes has been investigated .The results indicated that the magnesium loss could be manipulated by adjusting the focusing conditions of the laser beam. Almost, the obtained holes were free of cracks with low taper and low sputter deposition. .The holes performed under atmospheric conditions have high
... Show More