In this work, the possibility of utilizing osmosis phenomenon to produce energy as a type of the renewable energy using Thin Film Composite Ultra Low Pressure membrane TFC-ULP was studied. Where by forward osmosis water passes through the membrane toward the concentrated brine solution, this will lead to raise the head of the high brine solution. This developed static head may be used to produce energy. The aim of the present work is to study the static head developed and the flux on the high brine water solution side when using forward and reverse osmosis membranes for an initial concentration range from 35-300 g/l for each type of membrane used at room temperature and pressure conditions, and finally calculating the maximum possible power generated from developed static head.
In the present work advanced oxidation process, photo-Fenton (UV/H2O2/Fe+2) system, for the treatment of wastewater contaminated with oil was investigated. The reaction was influenced by the input concentration of hydrogen peroxide H2O2, the initial amount of the iron catalyst Fe+2, pH, temperature and the concentration of oil in the wastewater. The removal efficiency for the system UV/ H2O2/Fe+2 at the optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=3, temperature =30o C) for 1000mg/L load was found to be 72%.
In this work, a novel biocatalytic process for the production of 7-methylxanthines from theobromine, an economic feedstock has been developed. Bench scale production of 7-methlxanthine has been demonstrated. The biocatalytic process used in this work operates at 30 OC and atmospheric pressure, and is environmentally friendly. The biocatalyst was E. coli BL21(DE3) engineered with ndmB/D genes combinations. These modifications enabled specific N7- demethylation of theobromine to 7-methylxanthine. This production process consists of uniform fermentation conditions with a specific metabolically engineered strain, uniform induction of specific enzymes for 7-methylxanthine production, uniform recovery an
... Show MorePharmaceuticals are widely distributed in different applications and also released into the environment. Adsorption of Ciprofloxacin HCl (CIPH) on Porcelinaite was studied at ambient conditions. The adsorption isotherms can be well described using the Freundlich and Temkin equations. The pH of the solution influences significantly the adsorption capacity of Porcelinaite, the adsorption of CIPH increased from the initial pH 1.3 and then decreased over the pH rang of 3.8-9. The adsorption is sensitive to the change in ionic Strength, which indicate that electrostatic attraction is a significant mechanism for sorption process. The enthalpy change (∆H) for the adsorption of CIPH onto Porcelinaite signifies an endothermic adsorption. The ∆G
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camadulensis leaves) by organic solvents. the effects of the main operating parameters were studied; type of solvent (n-hexane and ethanol), time to reach equilibrium, the temperature (45°C to 65°C) for n-hexane and (45°C to 75°C) for ethanol, solvent to solid ratio (5:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm) and the particle size (0.5 to 2.5 cm) of fresh leaves to find the best processing conditions for the achieving maximum oil yield. The concentration of eucalyptus oil in solvent was measured by using UV-spectrophotometer. The results (for n-hexane) showed that the agitation speed of 900 rpm, temperature 65°C with solvent to soli
... Show MoreAbstract
The present paper focuses in a particular on the study of the biochar production conditions by the thermal pyrolysis of biomass from local Iraqi palm fronds, in the absence of oxygen. The biochar product can be used as soil improvers. The effect of temperature on the extent of the thermal pyrolysis process was studied in the range from 523 to 773K with a residence time of 15 minutes and nitrogen gas flow rate of 0.1 l/min. The produced biochar was characterized as will as biomass and degradation products. The results showed that the rate of biochar production decreases with the increasing in temperature, also it was noted that the normalized biochar surface area and pore size increases with the increasin
... Show MoreIndustrial wastewater containing nickel, lead, and copper can be produced by many industries. The reverse osmosis (RO) membrane technologies are very efficient for the treatment of industrial wastewater containing nickel, lead, and copper ions to reduce water consumption and preserving the environment. Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50 to 200 ppm), pressures (1 to 4 bar), temperatures (10 to 40 oC), pH (2 to 5.5), and flow rates (10 to 40 L/hr), were prepared and subjected to treatment by RO system in the laboratory. The results showed that high removal efficiency of the heavy metals could be achieved by RO process (98.5%, 97.5% and 96% for Ni(II),
... Show Moreيهدف البحث الحالي إلى الاستفادة من القهوة المستهلكة , كمادة وسيطة حيث تعد القهوة المستهلكة من المخلفات المضرة للبيئة الاستخراج الكافيين الطبيعي والذي يعد مادة ذات نشاط حيوي واهمية, وتحديد العوامل الفعالة في كفاءة عملية الاستخلاص من حيث تركيز الكافيين. تضمنت المتغيرات الرئيسية المدروسة وقت الاستخلاص 0-150 دقيقة ، ودرجة الحرارة 25-55 درجة مئوية ، وسرعة الخلط 180-450 دورة في الدقيقة ، ودرجة الحموضة العالق
... Show MoreRemoval of solar brown and direct black dyes by coagulation with two aluminum based
coagulants was conducted. The main objective is to examine the efficiency of these
coagulants in the treatment of dye polluted water discharged from Al-Kadhymia Textile
Company (Baghdad-Iraq). The performance of these coagulants was investigated through
jar test by comparing dye percent removal at different wastewater pH, coagulant dose,
and initial dye concentration. Results show that alum works better than PAC under acidic
media (5-6) and PAC works better under basic media (7-8) in the removal of both solar
brown and direct black dyes. Higher doses of PAC were required to achieve the
maximum removal efficiency under optimum pH co