Phosphorus and dye (direct black) removal for small – scale wastewater applications were investigated using oven dried alum sludge (ODS).The use of alum sludge not only provides a low cost technique but also reduces the hazard and the cost related to the disposal of large amount of alum sludge. Phosphorus and dye removal exceeds 90% for all operating conditions applied in the research.
The residuals generated during the treatment of wastewater were further tested to study the possibility of aluminum leaching from oven dried alum sludge during the adsorption of phosphorus and dye. These tests observed a reduction in aluminum leaching indicating a lower risk imposed on land and surface water based on disposal options rather than on alum sludge disposal.
The leaching of aluminum was observed to be mostly below 1 mg/l for a pH solution of 6 and 7 for both processes of phosphorus and dye removal. However, the pH of 5 seemed to have a concentration of more than 1mg/l of aluminum.
The neutron flux in this paper, which is generated as a result of γ incineration of the radioactive fisssion products isotopes has been evaluated .It is obvious from this paper that the neutron flux value depends on the number of incineration nuclei and the nuclear cross-section of the incinerated isotopes, and the neutron flux is directly dependent on γ-ray flux. The neutron flux increases from 1010to 1017n/s.gm as the irradiation flux increases from 1016to 1020 γ/cm2.s. It is concluded that the γ-incineration technique can be used to produce a switchable neutron source of high flux.
Various industrial applications include the dyeing of textiles, paper, leather, and food products, as well as the cosmetics industry. Physic-chemical methods are required to breakdown dyes because they are known to be harmful and persistent in the environment. Many companies' treated effluents contain small amounts of dyes. When it comes to removing dye from wastewater, adsorption has verified to be aneconomical alternative to more traditional treatment procedures. It's important to degrade color impurities in industrial effluents since they constitute a serious health and environmental concern. One way that's been tried is using clay minerals as an adsorbent. Using adsorption for removing
... Show MoreThis article discusses a discussion of trends and patterns of understanding and application of the concept of metaphor to various subjects that may interfere with the perspective of metaphors in translation theory, an attempt was made to use the principles and characteristics of metaphors and their fundamental tradition in translation theory, and to uncover the perspective of considering metaphor as a conceptual process. presenting its merits, since it is still considered an eccentric expression of linguistics.
Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
The present work is to investigate the feasibility of removal vanadium (V) and nickel (Ni) from Iraqi heavy gas oil using activated bentonite. Different operating parameters such as the degree of bentonite activation, activated bentonite loading, and operating time was investigated on the effect of heavy metal removal efficiency. Experimental results of adsorption test show that Langmuir isotherm predicts well the experimental data and the maximum bentonite uptake of vanadium was 30 mg/g. The bentonite activated with 50 wt% H2SO4 shows a (75%) removal for both Ni and V. Results indicated that within approximately 5 hrs, the vanadium removal efficiencies were 33, 45, and 60% at vanadium loadings of 1
... Show MoreA large amount of thermal energy is generated from burning hazardous chemical wastes, and the temperature of the flue gases in hazardous waste incinerators reaches up to (1200 °C). The flue gases are cooled to (40°C) and are treated before emission. This thermal energy can be utilized to produce electrical power by designing a system suitable for dangerous flue gases in the future depending on the results of much research about using a proto-type small steam power plant that uses safe fuel to study and develop the electricity generation process with water tube boiler which is manufactured experimentally with theoretical development for some of its parts which are inefficient in experimental work. The studied system gen
... Show MoreThe presence of alkaloids in Crassula ovata is a topic that is still unexplored, as there are no published studies on the matter. This study demonstrates the presence of an alkaloid compound (and its class) for the first time in Crassula ovata. The plant material was defatted with n-hexane, and a Soxhlet apparatus was used for the extraction process, while the acid-base method was used for the isolation of alkaloids from the chloroform fractions. The quaternary alkaloid was precipitated from the aqueous layer spontaneously, in high quantity. By using standard spectroscopic methods (including liquid chromatography - mass spectroscopy) we were able to clarify the structure of the precipi¬tated compound as a tetrahydroprotoberberine a
... Show More