This work deals with preparation of zeolite 5A from Dewekhala kaolin clay in Al-Anbar region for drying and desulphurization of liquefied petroleum gas. The preparation of zeolite 5A includes treating kaolin clay with dilute hydrochloric acid 1N, treating metakaolin with NaOH solution to prepare 4A zeolite, ion exchange, and formation. For preparation of zeolite 4A, metakaolin treated at different temperatures (40, 60, 80, 90, and 100 °C) with different concentrations of sodium hydroxide solution (1, 2, 3, and 4 N) for 2 hours. The zeolite samples give the best relative crystallinity of zeolite prepared at 80 °C with NaOH concentration 3N (199%), and at 90 and 100°C with NaOH concentration solution 2N (184% and 189%, respectively). Zeolite 5A was prepared by ion exchange of zeolite 4A prepared at 90°C and 2N NaOH concentration with 1.5 N calcium chloride solution at 90 °C and 5 hours, the ion exchange percentage was 66.6%. The formation experiments included mixing the prepared powder of 5A zeolite with different percentages of kaolin clay, citric acid and tartaric acid to form an irregular shape of zeolite granules. Tartaric acid binder gives higher bulk crushing strength than that obtained by using citric acid binder with no significant difference in the surface area. 7.5 weight% tartaric acid binder has the higher bulk crushing strength 206 newton with surface area 267.4 m2/g. Kaolin clay binder with 15 weight% gives the highest surface area 356 m2/g with bulk crushing strength 123 newton, it was chose as the best binder for zeolite 5A. The prepared granules of 5A zeolite were used for the adsorption experiments of H2O, and H2S contaminants from LPG. Different flow rates of LPG (3, 4, and 5 liter/minute) were studied. It was found that H2O is the strongly adsorbed component and H2S is the weakly adsorbed component. The best flow rate in this work for H2O, and H2S adsorption is 5 liter/minute of LPG. The adsorption capacity for H2O was 7.547 g/g and for H2S was 1.734 g/g.
Lipase enzyme has attracted a lot of attention in recent years because of its diverse biotechnological applications. The present study was conducted to screen germinated seeds of four crops, namely sunflower (Helianthus annuus), flaxor linseed (Linum usitatissimum ), peanut (Arachis hypogaea ) and castor bean (Ricinus communis), for the activity of their lipases. to the study also included the extraction and purification of lipase from the seeds of the most promising crop using different solvents. The results indicated that the maximum enzymatic activity (0.669 U/ml) was obtained when 0.1 M Tris-HCl buffer extract was used after 3 days of seed germination of all the tested species, as compared to the other test solvents
... Show MoreNisoldipine (NSD) is a dihydropyridine class of calcium channel blockers used for hypertension treatment, it belongs to class II BCS (low solubility with high permeability), its absolute bioavailability is only 5% due to presystemic metabolism in the gut wall. It is also a substrate for a CYP3A and P-gp. Bilosomes are lipid bilayer vesicles incorporating bile salts in their walls to prevent degredation by GIT bile salts. The aim of this study is to prepare nisoldipine bilosomes as vesicular carrier and assess the effect of different formulation variables such as type of surfactant, amount of cholesterol, surfactant and sonication time on particle size, entrapment efficiency and poly dispersity index of the prepared bilos
... Show MoreGas and downhole water sink assisted gravity drainage (GDWS-AGD) is a promising gas-based enhanced oil recovery (EOR) process applicable for reservoirs associated with infinite aquifers. However, it can be costly to implement because it typically involves the drilling of multiple vertical gas-injection wells. The drilling and well-completion costs can be substantially reduced by using additional completions for gas injection in the oil production wells through the annulus positioned at the top of the reservoir. Multi-completion-GDWS-AGD (MC-GDWS-AGD) can be configured to include separate completions for gas injection, oil, and water production in individual wells. This study simulates
The target of this study was to study the natural phytochemical components of the head (capsule) of Cynara scolymus cultivated in Iraq. The head (capsule) of plant was extracted by maceration in70% ethanol for 72 hours, and fractioned by hexane, chloroform and ethyl acetate. Preliminary qualitative phytochemical screening was performed on the ethyl acetate fraction for capsule was revealed the presence of flavonoid and aromatic acids. These were examined by (high -performance liquid chromatography) (HPLC diodarray), (high- performance thin-layer chromatography)(HPTLC).
Flavonoids were isolated by preparative layer chromatography and aromatic acid was isolated by preparative high-
... Show MoreThe gas sensing properties of Co3O4 and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4 and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4 possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.
The sen
... Show MoreZinc oxide thin films were deposited by chemical spray pyrolysis onto glass substrates which are held at a temperature of 673 K. Some structural, electrical, optical and gas sensing properties of films were studied. The resistance of ZnO thin film exhibits a change of magnitude as the ambient gas is cycled from air to oxygen and nitrogen dioxide
Gas lift is one of the artificial lift techniques which it is frequently implemented to raise oil production. Conventionally, the oil wells produce depending on the energy of reservoir pressure and solution gas which declines due to continuous production. Therefore, many oil wells after a certain production time become unable to lift oil to the surface. Thus, the continuity of production requires implementation of gas lift which works to decrease the average fluid density in the tubing by injection gas through the annulus into the tubing. This paper aims to get maximum oil production of an Iraqi giant oil field at optimum injected gas rate. The field is located in south of Iraq and in
The sensitivity of SnO2 nanoparticles/reduced graphene oxide hybrid to NO2 gas is discussed in the present work using density functional theory (DFT). The SnO2 nanoparticles shapes are taken as pyramids, as proved by experiments. The reduced graphene oxide (rGO) edges have oxygen or oxygen-containing functional groups. However, the upper and lower surfaces of rGO are clean, as expected from the oxide reduction procedure. Results show that SnO2 particles are connected at the edges of rGO, making a p-n heterojunction with a reduced agglomeration of SnO2 particles and high gas sensitivity. The DFT results are in
Matrix acidizing is a good stimulation process in which acid is introduced into the reservoir near the wellbore area via the wellbore or coil tubing. In the oil industry, formation damage is a prevalent problem. Bypassing wellbore damage by producing wormholes in carbonate reservoirs is the main purpose of acidizing the matrix of the formation. When doing lab tests, scientists are looking for a wormhole-inducing injection rate that can be used in the field. Meantime the ongoing works on the Ahdeb oil field's Mishrif reservoir, several reports have documented the difficulties encountered during stimulation operations, including high injection pressures that make it difficult to inject acid into the reservoir formation; and only a few
... Show More