This work deals with thermal cracking of slack wax produced as a byproduct from solvent dewaxing process of medium lubricating oil fraction in AL-Dura refinery. The thermal cracking process was carried out at a temperature ranges 480-540 ºC and atmospheric pressure. The liquid hourly space velocity (LHSV) for thermal cracking was varied between 1.0-2.5 . It was found that the conversion increased (61 - 83) with the increasing of reaction temperature (480 - 540) and decreased (83 - 63) with the increasing of liquid hourly space velocity (1.0 - 2.5).
The maximum gasoline yield obtained by thermal cracking process (48.52 wt. % of feed) was obtained at 500 ºC and liquid hour space velocity 1 . The obtaining liquid product at the best operating condition 500 ºC and LHSV 1 was fractionated into wide range fractions. Based on the determination of some properties for the distilled fractions and comparison (these properties with that required by standard requirements) it is possible to use the fractions of cracking products as a component for production of automobile gasoline, domestic kerosene, light diesel fuel and basic lubricating oils.
The permeable reactive barrier (PRB) is one of the promising innovative in situ groundwater remediation technologies, in removing of copper from a contaminated shallow aquifer. The 1:1- mixture of waste foundry sand (WFS) and Kerbala’s sand (KS) was used for PRB. The WFS was represented the reactivity material while KS used to increase the permeability of PRB only. However, Fourier-transform infrared (FTIR) analysis proved that the carboxylic and alkyl halides groups are responsible for the sorption of copper onto WFS. Batch tests have been performed to characterize the equilibrium sorption properties of the (WFS+KS) mix in copper- containing aqueous
solutions. The sorption data for Cu+2 ions, obtained by batch experiments, have be
We investigated at the optical properties, structural makeup, and morphology of thin films of cadmium telluride (CdTe) with a thickness of 150 nm produced by thermal evaporation over glass. The X-ray diffraction study showed that the films had a crystalline composition, a cubic structure, and a preference for grain formation along the (111) crystallographic direction. The outcomes of the inquiry were used to determine these traits. With the use of thin films of CdTe that were doped with Ag at a concentration of 0.5%, the crystallization orientations of pure CdTe (23.58, 39.02, and 46.22) and CdTe:Ag were both determined by X-ray diffraction. orientations (23.72, 39.21, 46.40) For samples that were pure and those that were doped with
... Show MoreIn this work Aquatic plant (Nile rose) was used to study adsorption of industrial dye (safranin-O from aqueous solution within several operation conditions. The dried leaves of Nile rose plant were used as adsorbents safranin-O from aqueous solution after different activations such as wet and dry enhancements. The data show increasing in dye solution removal percentage for both activation methods of the adsorbent and also dye removal percentage that was obtained by using adsorbent without any treatment with the progress contact time. The dye removal percentages at equilibrium time 40 minutes were 88.7% at non-activation, 92.3% at thermal activation, and 98.3% at acidic activation. The samples adsorbents before and after adsorption which wer
... Show MoreIn this study, (50–110 nm) magnetic iron oxide (α-Fe2O3) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results sh
... Show MoreDevelopment and population expansion have the lion's share of driving up the fuel cost. Biodiesel has considerable attention as a renewable, ecologically friendly and alternative fuel source. In this study, CaO nanocatalyst is produced from mango leaves as a catalysis for the transesterification of waste cooking oil (WCO) to biodiesel. The mango tree is a perennial plant, and its fruit holds significant economic worth due to its abundance of vitamins and minerals. This plant has a wide geographical range and its leaves can be utilized without any negative impact on its growth and yield. An analysis was conducted to determine the calcium content in the fallen leaves, revealing a significant quantity of calcium that holds potential fo
... Show MoreIn this work, lead oxide nanoparticles were prepared by laser ablation of lead target immersed in deionized water by using pulsed Nd:YAG laser with laser energy 400 mJ/pulse and different laser pulses. The chemical bonding of lead oxide nps was investigated by Fourier Transform Infrared (FTIR); surface morphology and optical properties were investigated by Scanning Electron Microscope (SEM) and UV-Visible spectroscopy respectively, and the size effect of lead oxide nanoparticles was studied on its antibacterial action against two types of bacteria Gram-negitive (Escherichia coli) and Gram-positive (Staphylococcusaurus) by diffusion method. The antibacterial property results show that the antibacterial activity of the Lead oxide NPs was
... Show MoreIn this work, nanostructure aluminum oxide thin films were deposited on glass substrates using a direct current (DC) magnetic reactive sputtering (MRS) technique. A gaseous mixture of argon and oxygen at different mixing ratios was used to synthesize Al2O3 nanoparticles. After extracting Al2O3 powder from the glass substrate, X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and energy-dispersive spectroscopy (EDS) were used to analyze the structural and morphological properties of the synthesized thin films. The effect of deposition time on the spectral properties, as well as on the size of the nanoparticles, was determined.
The study was conducted to show the effect of using dried rumen powder as a source of animal protein in the diets of common carp (Cyprinus carpio L.) on its performance, in the fish laboratory/College of Agricultural Engineering Sciences/University of Baghdad/ for a period of 70 d, 70 fingerlings were used with an average starting weight of 30±3 g, with a live mass rate of 202±2 g, randomly distributed among five treatments, two replicates for each treatment and seven fish for each replicate. Five diets of almost identical protein content and different percentages of addition of dried rumen powder were added. 25% was added to treatment T2 and 50% to treatment T3 and 75% of the treatment T4 and 100% of the treatment T5
... Show More