This study focused on the improvement of the quality of gasoline and enhancing its octane number by the reduction of n-paraffins using zeolite 5A. This study was made using batch and continuous mode. The parameters which affected the n-paraffin removal efficiency for each mode were studied. Temperature (30 and 40 ˚C) and mixing time up to 120 min for different amounts of zeolite ranging (10-60 g) were investigated in a batch mode. A maximum removal efficiency of 64% was obtained using 60 g of zeolite at 30 ˚C after a mixing time 120 min. The effect of feed flow rate (0.3-0.8 l/hr) and bed height (10-20 cm) were also studied in a continuous mode. The equilibrium isotherm study was made using different amounts of zeolite (2-20 g) and then simulated for n-hexane and n- heptane using Langmuir, Freundlich isotherms. Kinetic of the adsorption of n-hexane and n-heptane was investigated using pseudo first order, pseudo second order and intra particle model. The Research octane number (RON) for some selected samples was measured to show the effect of the removal on the quality improvement of gasoline. Results showed an increase of 5.5 units in RON using 40 g zeolite at 40 ˚C and after 120 ˚C min. also an increase in 7 units was obtained in the continuous mode after 30 min using flow rate of o.3 l/hr and bed height of 10cm. Experimental data for n-hexane and n-heptane was found to fit Langmuir isotherm with correlation coefficient of 92.7% and 88.8% for n-C7 and n-C6, respectively. Adsorption of n-hexane and n-heptane was found to follow second order kinetics with correlation coefficient of 99.9% and 99.8% for n-C7and n-C6 respectively. This study revealed a favorable adsorption of n-paraffins on zeolite 5A as indicated by the separating factor of 0.6 and 0.44 for n-C7and n-C6, respectively.
Porous silicon (PS) layers were formed on n-type silicon (Si) wafers using Photo- electrochemical Etching technique (PEC) was used to produce porous silicon for n-type with orientation of (111). The effects of current density were investigated at: (10, 20, 30, 40, and50) mA/cm2 with etching time: 10min. X-ray diffraction studies showed distinct variations between the fresh silicon surface and the synthesized porous silicon. The maximum crystal size of Porous Silicon is (33.9nm) and minimum is (2.6nm) The Atomic force microscopy (AFM) analysis and Field Emission Scanning Electron Microscope (FESEM) were used to study the morphology of porous silicon layer. AFM results showed that root mean square (RMS) of roughness and the grain size of p
... Show MoreA new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
A new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
A new ligand [N-(3-acetylphenylcarbamothioyl)-4-chlorobenzamide] (CAD) was synthesized by reaction of 4-Chlorobenzoyl isothiocyanate with 3-amino acetophenone, The ligand was characterized by elemental micro analysis C.H.N. S., FT-IR, UV-Vis and 1H,13C- NMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(CAD)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral.
A new ligand [4-Methoxy -N-(pyrimidine-2-ylcarbamothioyl) benzamide] (MPB) was synthesized by reactioniofi(4-Methoxyibenzoyliisothiocyanate)withi(2-aminopyri-midine). The Ligand was characterized by elemental micro analysis (C.H.N.S),(FT-IR) (UV- Vis) and (1Hi,13CNMR)spectra. Some transition metals complexes of this ligand were prepared and characterized by (FT-IR, UV-Vis) spectra conductivity measurements magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all complexes was suggested to be [M(MPB)2Cl2] (M+2i=Cu, Mn, Co ,Ni ,Zn ,Cd and Hg),the proposed geometrical structure for all complexes was an octahedral.
World statistics proved that the most of work dangerous accidents, which causes death, are occurred in the construction works. These accidents related to many causes such as loss of workers experience and ignoring rules of safety requirements, especially young workers. Due to the risk of accidents that may occur in the site of work, the idea of this study crystallized to show the relationship between the age of worker and number of injuries and accidents, to identify the causes of these injuries, and to put the appropriate solutions to avoid or reduce the risk of work injuries. Also, the research shows the main principles of safety requirements to forming a clear picture about the subject of the study. A questioner form was prepared to c
... Show MoreThe study involved the removal of acidity from free fatty acid via the esterification reaction of oleic acid with ethanol. The reaction was done in a batch reactor using commercial 13X zeolite as a catalyst. The effects of temperatures (40 to 70 °C) and reaction time (up to 120 minutes) were studied using 6:1 mole ratio of pure ethanol to oleic acid and 5 wt. % of the catalyst. The results showed that acid removed increased with increasing temperature and reaction time. Also, the acidity removal rises sharply during the first reaction period and then changes slightly afterward. The highest acidity removal value was 67 % recorded at 110 minutes and 70 °C. An apparent homogeneous reversible reaction kinetic model has been proposed a
... Show MoreThe primary function of commercial banks is the process of converting liquid liabilities such as deposits to illiquid assets, (also known as a loan), liquid assets, (aka cash and cash equivalent) in a balanced manner between liquid and illiquid assets, that guaranteed the preservation of the rights of depositors and the bank and not by converting liquid liabilities into liquid assets in a very large percentage. This comes from its role as depository and intermediary institutions between supply and demand, therefore, we find that the high indicators of bank liquidity and solvency may reflect a misleading picture of the status of commercial banks, to some extent in terms of the strength of their balance sheets and
... Show MoreThe present study utilised date palm fibre (DPF) waste residues to adsorb Congo red (CR) dye from aqueous solutions. The features of the adsorbent, such as its surface shape, pore size, and chemical properties, were assessed with X-ray diffraction (XRD), BET, Fourier-transform infrared (FTIR), X-ray fluorescence (XRF), and field emission scanning electron microscope (FESEM). The current study employed the batch system to investigate the ideal pH to adsorb the CR dye and found that acidic pH decolourised the dye best. Extending the dye-DPF waste mixing period at 25°C reportedly removed more dye. Consequently, the influence of the starting dye and DPF waste quantity on dye removal was explored in this study. At 5 g/L dye concentration, 48% d
... Show More