This paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.
Buzurgan oil field suffers from the phenomenon of asphaltene precipitation. The serious negatives of this phenomenon are the decrease in production caused by clogging of the pores and decrease in permeability and wettability of the reservoir rocks, in addition to the blockages that occur in the pipeline transporting crude oil. The presence of laboratories in the Iraqi oil companies helped to conduct the necessary experiments, such as gas chromatography (GC) test to identify the components of crude oil and the percentages of each component, These laboratory results consider the main elements in deriving a new equation called modified colloidal instability index (MCII) equation based on a well-known global equation called colloidal in
... Show MoreObjectives: To identify the frequency and types of microsatellite instability among a group of sporadic CRC patients and to correlate the findings with clinicopathological characteristics. Methods: During an 8-month period, all patients with sporadic CRC who attended to two teaching hospitals in Baghdad, Iraq were recruited to this cross-sectional study regardless of age, sex, ethnicity, or tumor characteristics. Demographic, clinical, and histopathological features were recorded. DNA was extracted from FFPE-blocks of the resected tumors and normal tissues. PCR amplification of five microsatellite mononucleotide repeat loci (BAT25, BAT26, NR-21, NR-24, and MONO-27) and 2 pentanucleotide repeat control markers (Penta C and Pent
... Show Moreالمستودع الرقمي العراقي. مركز المعلومات الرقمية التابع لمكتبة العتبة العباسية المقدسة
In this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given
Violence is one of the most serious threats facing societies because it affects their internal structure and threatens the security and stability of society. It is classified as one of the types of security crises that are emerging in Arab and Islamic societies in particular, and in most countries of the world in general.
The threat of this crisis is increasing. Terrorism is considered as one of the most serious aspects of that all the countries of the world, currently, suffer from. The terrorism has begun to penetrate deep into society in one way or another starting from the Second World War, which led to the emergence of leftist movements in Western Europe, Japan, France, Italy and other countries as a result of emerging ideas
... Show MoreIn aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreCesarean section, which was introduced into clinical practice as a lifesaving procedure for both the mother and the baby, is one of the most common surgeries performed in modern obstetrics. Formerly it was performed in interest of the mother; currently it is frequently done for fetal indication. As other procedures of some complexity, its use follows the health care inequity pattern of the world; underuse in low income setting, and adequate or even unnecessary use in middle and high income setting (1).
The first modern cesarean section was performed by German gynecologist Ferdinand Adolf Kehrer in 1881. Cesarean section is often performed when a vaginal delivery would put the baby's or mother's life or health at risk. Many are also pe
Spatial data observed on a group of areal units is common in scientific applications. The usual hierarchical approach for modeling this kind of dataset is to introduce a spatial random effect with an autoregressive prior. However, the usual Markov chain Monte Carlo scheme for this hierarchical framework requires the spatial effects to be sampled from their full conditional posteriors one-by-one resulting in poor mixing. More importantly, it makes the model computationally inefficient for datasets with large number of units. In this article, we propose a Bayesian approach that uses the spectral structure of the adjacency to construct a low-rank expansion for modeling spatial dependence. We propose a pair of computationally efficient estimati
... Show More