Furfural is one of the one of pollutants in refinery industrial wastewaters. In this study advanced oxidation process using UV/H2O2 was investigated for furfural degradation in synthetic wastewater. The results from the experimental work showed that the degradation of furfural decreases as its concentration increases, reaching 100% at 50mg/l furfural concentration and increasing the concentration of H2O2 from 250 to 500 mg/l increased furfural removal from 40 to 60%.The degradation of furfural reached 100% after 90 min exposure time using two UV lamps, where it reached 60% using one lamp after 240 min exposure time. The rate of furfural degradation k increased at the pH and initial concentration of furfural decreased, but different H2O2concentrations indicated no significant effects on the reaction rate. UV/H2O2 process is effective for furfural degradation in wastewater at neutral pH where the disposal of such effluents will be within the environmental limitations.
Salah Al-Din Provence is an active agriculture and population region. One of its primary water sources is groundwater, which suffers from a lack of information regarding water quality and hydrochemistry. In order to study those missing variables, 27 samples from wells of shallow tubes were collected for analyzing the relevant physicochemical indices that help to produce the Schoeller index, Piper diagram, and Gibbs plot. Piper diagram revealed a hydrochemistry behavior of different values along with the groundwater samples. The chemistry of wells was controlled primarily by the evaporation process according to the Gibbs plot. The values of the Schoeller index of the studied samples stated that 59% of
Water supply and distribution networks play an important role in our daily activities. They make a substantial contribution to public health by providing potable water for public consumption and non-potable applications such as firefighters and other purposes such as irrigation. This study used ArcMap 10.8 and WaterGEMS CONNECT Edition update 1 version to create a hydraulic network model to simulate the pipes’ network. Detailed network information, including pipe lengths, layouts, and diameters, was given by the Baghdad Water Department. The TUF-2000H Handheld digital ultrasonic flow meter has been used to measure the water flows in the network’s source nodes. In eight junctions,
The current research deals with practical studies that explain to the Iraqi consumer multiple instances about the phenomenon of water hammer which occur in the water pipeline operating with pressure. It concern a practical study of the characteristics of this phenomenon and economically harmful to the consumer the same time. Multiple pipe fittings are used aimed to reduce this phenomenon and its work as alternatives to the manufactured arresters that used to avoid water hammer in the sanitary installations, while the consumer did not have any knowledge as to the non-traded for many reasons, including the water pressure decreases in the networks and the use of consumer pumps to draw water directly from the network. Study found a number of
... Show MoreA new bio-electrochemical system was proposed for simultaneous removal of organic matters and salinity from actual domestic wastewater and synthetically prepared saline water, respectively. The performance of a three-chambered microbial osmotic fuel cell (MOFC) provided with forward osmosis (FO) membrane and cation exchange membrane (CEM) was evaluated with respect to the chemical oxygen demand (COD) removal from wastewater, electricity generation, and desalination of saline water. The MOFC wasinoculated with activated sludge and fueled with actual domestic wastewater. Results revealed that maximum removal efficiency of COD from wastewater, TDS removal efficiency from saline water, power density, and current density were
... Show MoreThis study investigates the results of electrocoagulation (EC) using aluminum (Al) electrodes as anode and stainless steel (grade 316) as a cathode for removing silica, calcium, and magnesium ions from simulated cooling tower blowdown waters. The simulated water contains (50 mg/l silica, 508 mg/l calcium, and 292 mg/l magnesium). The influence of different experimental parameters, such as current density (0.5, 1, and 2 mA/cm2), initial pH(5,7, and 10), the temperature of the simulated solution(250C and 35 0C), and electrolysis time was studied. The highest removal efficiency of 80.183%, 99.21%, and 98.06% for calcium, silica, and magnesium ions, respectively, were obtained at a current de
... Show MoreIn this paper, ceramic water filters were produced by using ten mixtures of different ratios of red clay and sawdust under different production conditions. The physical properties of these filters were tested. The production conditions include five press pressures ranged from 10 to 50MPa and a firing schedule having three different final temperatures of 1000, 1070, and 1100˚C. The tests results of the physical properties were used to obtain best compatibility between the hydraulic and the mechanical properties of these filters. Results showed that as the press pressure and the firing temperature are increased, the bulk density and the compressive and bending strengths of the produced filters are increased, while, the porosity and absorp
... Show MoreWater absorbent polymers (WAP) are new component in producing building materials. They provide internal curing which reduces autogenous cracking, eliminates autogenous shrinkage, mortar strength increased, enhance early age strength to withstand strain, improve the durability, introduce higher early age compressive strength, have higher performance and reduce the effect of insufficient external curing. This research used different percent of polymer balls to choose the percent that provides good development in compressive strength with time for both water and air curing. The water absorption polymer balls in this research have the ability to absorb water and after usage in concrete they spill out the water (internal curing) and shri
... Show MoreWell-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.